Monitoring workload is critical for elite training and competition, as well as preventing potential sports injuries. The assessment of external load in team sports has been provided with new technologies that help coaches to individualize training and optimize their team’s playing system. In this study we characterized the physical demands of an elite handball team during an entire sports season. Novel data are reported for each playing position of this highly strenuous body-contact team sport. Sixteen world top players (5 wings, 2 centre backs, 6 backs, 3 line players) were equipped with a local positioning system (WIMU PRO) during fourteen official Spanish first league matches. Playing time, total distance covered at different running speeds, and acceleration variables were monitored. During a handball match, wings cover the greater distance by high-speed running (> 5.0 m·s
-1
): 410.3 ± 193.2 m, and by sprint (> 6.7 m·s
-1
): 98.0 ± 75.4 m. Centre backs perform the following playing position that supports the highest speed intensities during the matches: high-speed running: 243.2 ± 130.2 m; sprint: 62.0 ± 54.2 m. Centre backs also register the largest number of high-intensity decelerations (n = 142.7 ± 59.5) compared to wings (n = 112.9 ± 56.0), backs (n = 105.2 ± 49.2) and line players: 99.6 ± 28.9). This study provides helpful information for professional coaches and their technical staff to optimize training load and individualize the physical demands of their elite male handball players depending on each playing position.
The aims of this study were to analyze the peak physical demands in elite futsal by quantifying the most demanding scenarios of match play and to identify the differences between playing positions (defenders, wingers, and pivots) and the seasonal trend for five different rolling average time windows (30, 60, 120, 180, and 300 s). The most demanding scenarios of external load from distance, speed, acceleration, and deceleration variables were obtained from 14 elite futsal players using a local positioning system during 15 official matches in the premier Spanish Futsal League (2018–2019 season). The results showed an extremely large effect of the time window for all dependent variables in all positional groups. Another important finding of this study was that, in regard to the seasonal trend, only defenders reported clear moderate-large positive trends for high-speed running (>18 km⋅h–1) efforts, high-acceleration efforts, and high-deceleration efforts. Finally, moderate-large individual differences in player means for all dependent variables and clear differences between games for most dependent variables were found, suggesting how likely contextual factors may exert an influence on how “demanding” the most demanding scenarios are. The findings of this study provide coaches and strength and conditioning coaches further knowledge of the peak physical demands in elite futsal competition. This valuable information may lead to a more precise position-specific training prescription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.