Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption. In contrast, NHE3(-) jejuna had reduced net Na(+) absorption (approximately 2 microeq/cm(2) x h) but absorbed Cl(-) at rates similar to NHE(+) and NHE2(-) jejuna. Treatment with 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA) completely inhibited net Na(+) and Cl(-) absorption in all genotypes. Studies of the Na(+) absorptive flux (J) indicated that J in NHE(+) jejunum was not sensitive to 1 microM EIPA, whereas J in NHE3(-) jejunum was equally sensitive to 1 and 100 microM EIPA. Treatment with forskolin/IBMX to increase intracellular cAMP (cAMP(i)) abolished net NaCl absorption and stimulated electrogenic Cl(-) secretion in all three genotypes. Quantitative RT-PCR of epithelia from NHE2(-) and NHE3(-) jejuna did not reveal differences in mRNA expression of NHE3 and NHE2, respectively, when compared with jejunal epithelia from NHE(+) siblings. We conclude that 1) NHE3 is the dominant NHE involved in small intestinal Na(+) absorption; 2) an amiloride-sensitive Na(+) transporter partially compensates for Na(+) absorption in NHE3(-) jejunum; 3) cAMP(i) stimulation abolishes net Na(+) absorption in NHE(+), NHE2(-), and NHE3(-) jejunum; and 4) electroneutral Cl(-) absorption is not directly dependent on either NHE2 or NHE3.
By using a retroviral infection strategy followed by tissue recombination we have created a model of human prostate cancer that demonstrates that the c-MYC gene is sufficient to induce carcinogenesis.
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.g., cystic fibrosis) may include adaptations in the opposing transport process to prevent enterosystemic fluid imbalance. To test this hypothesis, we measured electrogenic anion secretion (indexed by the short-circuit current) across NHE3-null [NHE3(-)] murine small intestine and electroneutral Na(+) absorption (by radioisotopic flux analysis) across small intestine of mice with gene-targeted disruptions of the anion secretory pathway, i.e., CFTR-null [CFTR(-)] or Na(+)-K(+)-2Cl(-) cotransporter-null [NKCC1(-)]. Protein expression of NHE3 and CFTR in the intestinal epithelia was measured by immunoblotting. In NHE3(-), compared with wild-type small intestine, maximal and bumetanide-sensitive anion secretion following cAMP stimulation was significantly reduced, and there was a corresponding decrease in CFTR protein expression. In CFTR(-) and NKCC1(-) intestine, Na(+) absorption was significantly reduced compared with wild-type. NHE3 protein expression was decreased in the CFTR(-) intestine but was unchanged in the NKCC1(-) intestine, indicating that factors independent of expression also downregulate NHE3 activity. Together, these data support the concept that absorptive and secretory processes determining NaCl and water movement across the intestinal epithelium are regulated in parallel to maintain balance between the systemic fluid volume and hydration of the luminal contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.