The fluorescent amine reactive probe Pacific Blue succinimidyl ester (PB) is used for the detection of trace amounts of amines and amino acids by microchip capillary electrophoresis on the Mars Organic Analyzer (MOA). The spectral and chemical properties of PB provide a 200-fold increase in sensitivity and improved resolution compared to fluorescamine derivatization. With the use of cross injection and PB labeling, the MOA detected amino acids at concentrations as low as 75 pM (sub-parts-per-trillion). Micellar electrokinetic chromatography (MEKC) which separates PB-labeled amino acids by their hydrophobicity is also demonstrated. The optimized MEKC conditions (45 mM CHAPSO, pH 6 at 5 degrees C) effectively separated amines and 25 amino acids with enantiomeric resolution of alanine, serine, and citrulline. Samples from the Yungay Hills region in the Atacama Desert, Chile, and from the Murchison meteorite are successfully analyzed using both techniques, and amino acids are found in the parts-per-billion range. Abiotic amino acids such as beta-alanine and epsilon-aminocaprioc acid are detected along with several neutral and acidic amino acids in the Murchison sample. The Atacama Desert sample is found to contain homochiral L-alanine and L-serine indicating the presence of extant or recently extinct life.
A fully integrated solar‐driven water‐splitting system comprised of WO3/FTO/p+n Si as the photoanode, Pt/TiO2/Ti/n+p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4, and evaluated for performance and safety characteristics under dual side illumination. A multi‐physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light‐absorbing area and the solution‐transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three‐electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back‐to‐back in a tandem configuration to provide sufficient photovoltage to sustain solar‐driven unassisted water‐splitting. The current–voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar‐to‐hydrogen (STH) conversion efficiency due to the large band gap of WO3. A hydrogen‐production rate of 0.17 mL hr−1 and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar‐driven water‐splitting system. The solar‐to‐hydrogen conversion efficiency, ηSTH, calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available.
Inner-sphere electron-transfer reorganization energies of Zn(protoporphyrin IX) and Zn(octaethylporphyrin) are determined from band-shape analyses of the first ionization obtained by gas-phase valence photoelectron spectroscopy. The experimentally determined total inner-sphere reorganization energies for self-exchange (120-140 meV) indicate that structural changes upon oxidation are largely confined to the porphyrin ring, and substituents on the ring or solvent and other environmental factors make smaller contributions. Computational estimates by different models vary over a wide range and are sensitive to numerical precision factors for these low reorganization energies. Of current computational models that are widely available and practical for molecules of this size, functionals that contain a mixture of Hartree-Fock exchange and DFT exchange-correlation appear to be the most applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.