The IPD-IMGT/HLA Database, http://www.ebi.ac.uk/ipd/imgt/hla/, currently contains over 25 000 allele sequence for 45 genes, which are located within the Major Histocompatibility Complex (MHC) of the human genome. This region is the most polymorphic region of the human genome, and the levels of polymorphism seen exceed most other genes. Some of the genes have several thousand variants and are now termed hyperpolymorphic, rather than just simply polymorphic. The IPD-IMGT/HLA Database has provided a stable, highly accessible, user-friendly repository for this information, providing the scientific and medical community access to the many variant sequences of this gene system, that are critical for the successful outcome of transplantation. The number of currently known variants, and dramatic increase in the number of new variants being identified has necessitated a dedicated resource with custom tools for curation and publication. The challenge for the database is to continue to provide a highly curated database of sequence variants, while supporting the increased number of submissions and complexity of sequences. In order to do this, traditional methods of accessing and presenting data will be challenged, and new methods will need to be utilized to keep pace with new discoveries.
It is 24 years since the IPD-IMGT/HLA Database, http://www.ebi.ac.uk/ipd/imgt/hla/, was first released, providing the HLA community with a searchable repository of highly curated HLA sequences. The database now contains over 35 000 alleles of the human Major Histocompatibility Complex (MHC) named by the WHO Nomenclature Committee for Factors of the HLA System. This complex contains the most polymorphic genes in the human genome and is now considered hyperpolymorphic. The IPD-IMGT/HLA Database provides a stable and user-friendly repository for this information. Uptake of Next Generation Sequencing technology in recent years has driven an increase in the number of alleles and the length of sequences submitted. As the size of the database has grown the traditional methods of accessing and presenting this data have been challenged, in response, we have developed a suite of tools providing an enhanced user experience to our traditional web-based users while creating new programmatic access for our bioinformatics user base. This suite of tools is powered by the IPD-API, an Application Programming Interface (API), providing scalable and flexible access to the database. The IPD-API provides a stable platform for our future development allowing us to meet the future challenges of the HLA field and needs of the community.
The paper presents evidence that earnings levels as well as changes in earnings are important in explaining stock returns in an emerging stock market. The study employs data on all listed firms in the Cyprus Stock Exchange over the ten-year period 1985-1994. Operating cash flows have no incremental information content beyond earnings. Earnings is more informative for larger firms consistent with the notion that accounting information by larger firms is perceived as being more reliable. Moreover, the earnings-returns relationship is not linear, being stronger for positive earnings levels and changes than for negative. Finally, the usefulness of earnings is statistically higher in the later half of the sample period. Overall, the results suggest that investors price earnings information in this emerging market.
As the primary genetic determinant of immune recognition of self and non‐self, the hyperpolymorphic HLA genes play key roles in disease association and transplantation. The large, variably sized HLA class II genes have historically been less well characterized than the shorter HLA class I genes. Here, we have used Pacific Biosciences Single Molecule Real‐Time (SMRT®) DNA sequencing to perform four‐field resolution HLA typing of HLA‐DRB1/3/4/5, ‐DQA1, ‐DQB1, ‐DPA1 and ‐DPB1 from a panel of 181 B‐lymphoblastoid cell lines from the International HLA and Immunogenetics Workshops. By interrogating all exons, introns, and the untranslated regions of these important reference cells, we have improved their HLA typing resolution on the IPD‐IMGT/HLA database. We observed widespread non‐coding polymorphism, with over twice as many unique genomic sequences identified compared with coding sequences (CDS). We submitted 263 unique sequences to the IPD‐IMGT/HLA Database, often from multiple cell lines, including 114 confirmations of existing alleles, of which 30 were also extensions to full‐length genomic sequences where only CDS was available previously. A total of 149 novel alleles were identified, largely differing from their closest reference allele sequences by a single nucleotide polymorphism (SNP). However, some highly divergent alleles were deemed to be recombinants, only detectable by full‐length sequencing with long, phased reads. The fourth‐field variation we observed allowed fine mapping of linkage disequilibrium patterns and haplotypes to particular ancestries. This study has highlighted the under‐appreciated non‐coding diversity in HLA class II genes, with potential implications for population genetic and clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.