Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Cytoplasmic fused in sarcoma (FUS) aggregates are pathological hallmarks of FUS-ALS. Proper shuttling between the nucleus and cytoplasm is essential for physiological cell function. However, the initial event in the pathophysiology of FUS-ALS remains enigmatic. Using human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs), we show that impairment of poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response (DDR) signaling due to mutations in the FUS nuclear localization sequence (NLS) induces additional cytoplasmic FUS mislocalization which in turn results in neurodegeneration and FUS aggregate formation. Our work suggests that a key pathophysiologic event in ALS is upstream of aggregate formation. Targeting DDR signaling could lead to novel therapeutic routes for ameliorating ALS.
Despite decades of research on amyotrophic lateral sclerosis (ALS), there is only one approved drug, which minimally extends patient survival. Here, we investigated pathophysiological mechanisms underlying ALS using motor neurons (MNs) differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying mutations in FUS or SOD1. Patient-derived MNs were less active and excitable compared to healthy controls, due to reduced Na 1 /K 1 ratios in both ALS groups accompanied by elevated potassium channel (FUS) and attenuated sodium channel expression levels (FUS, SOD1). ALS iPSC-derived MNs showed elevated endoplasmic reticulum stress (ER) levels and increased caspase activation. Treatment with the FDA approved drug 4-Aminopyridine (4AP) restored ion-channel imbalances, increased neuronal activity levels and decreased ER stress and caspase activation. This study provides novel pathophysiological data, including a mechanistic explanation for the observed hypoexcitability in patient-derived MNs and a new therapeutic strategy to provide neuroprotection in MNs affected by ALS. STEM CELLS 2016;34:1563-1575 SIGNIFICANCE STATEMENTOur primary objective was to characterize the neurophysiology of iPSC-based models of amyotrophic lateral sclerosis (ALS) and, based on these results, to prevent neurodegeneration using targeted pharmacological intervention. We observed that mutant FUS and SOD1 iPSC-derived motor neurons displayed hypoexcitability, which recently has been shown to be a promising target to increase resilience against ALS-associated neurodegeneration. We identified the molecular mechanisms causing this phenotype, which enabled us to define a new therapeutic strategy using the FDA-approved drug 4-Aminopyridine. 4-Aminopyridine is a potassium channel blocker that raised motor neuronal activity and decreased endoplasmic reticulum stress and caspase activation. Our results provide novel pathophysiological data and an innovative treatment concept for symptomatic and neuroprotective therapy in ALS that stands in contrast to current strategies.
Neuronal ceroid lipofuscinosis (NCL) comprises ∼13 genetically distinct lysosomal disorders primarily affecting the central nervous system. Here we report successful reprograming of patient fibroblasts into induced pluripotent stem cells (iPSCs) for the two most common NCL subtypes: classic late-infantile NCL, caused by TPP1(CLN2) mutation, and juvenile NCL, caused by CLN3 mutation. CLN2/TPP1- and CLN3-iPSCs displayed overlapping but distinct biochemical and morphological abnormalities within the endosomal-lysosomal system. In neuronal derivatives, further abnormalities were observed in mitochondria, Golgi and endoplasmic reticulum. While lysosomal storage was undetectable in iPSCs, progressive disease subtype-specific storage material was evident upon neural differentiation and was rescued by reintroducing the non-mutated NCL proteins. In proof-of-concept studies, we further documented differential effects of potential small molecule TPP1 activity inducers. Fenofibrate and gemfibrozil, previously reported to induce TPP1 activity in control cells, failed to increase TPP1 activity in patient iPSC-derived neural progenitor cells. Conversely, nonsense suppression by PTC124 resulted in both an increase of TPP1 activity and attenuation of neuropathology in patient iPSC-derived neural progenitor cells. This study therefore documents the high value of this powerful new set of tools for improved drug screening and for investigating early mechanisms driving NCL pathogenesis.
TAR DNA-binding protein 43 (TDP43) plays a significant role in familiar and sporadic amyotrophic lateral sclerosis (ALS). The diverse postulated mechanisms by which TDP43 mutations cause the disease are not fully understood. Human wildtype and TDP43 S393L and G294V mutant spinal motor neuron cultures were differentiated from patient-derived iPSCs. Mutant hTDP43 and wildtype motor neuron cultures did not differ in neuron differentiation capacity during early maturation stage. During aging we detected a dramatic neurodegeneration including neuron loss and pathological neurofilament abnormalities only in TDP43 mutant cultures. Additionally mitochondria and lysosomes of aging spinal motor neurons revealed robust TDP43 mutation dependent abnormal phenotypes in size, shape, speed and motility which all appeared without TDP43 mislocalization or aggregation formation. Furthermore, D-sorbitol - known to induce stress granules and cytoplasmic mislocalization of TDP43 - rescued axonal trafficking phenotypes without signs of TDP43 mislocalization or aggregation formation. Our data indicate TDP43 mutation-dependent but cytosolic aggregation-independent mechanisms of motor neuron degeneration in TDP43 ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.