5G is envisioned to be a multi-service network supporting a wide range of verticals with a diverse set of performance and service requirements. Slicing a single physical network into multiple isolated logical networks has emerged as a key to realizing this vision. This article is meant to act as a survey, the first to the authors' knowledge, on this topic of prime interest. We begin by reviewing the state of the art on 5G network slicing and we present a framework for bringing together and discussing existing work in a holistic manner. Using this framework, we evaluate the maturity of current proposals and identify a number of open research questions.
Although the radio access network (RAN) part of mobile networks offers a significant opportunity for benefiting from the use of SDN ideas, this opportunity is largely untapped due to the lack of a software-defined RAN (SD-RAN) platform. We fill this void with FlexRAN, a flexible and programmable SD-RAN platform that separates the RAN control and data planes through a new, custom-tailored southbound API. Aided by virtualized control functions and control delegation features, FlexRAN provides a flexible control plane designed with support for real-time RAN control applications, flexibility to realize various degrees of coordination among RAN infrastructure entities, and programmability to adapt control over time and easier evolution to the future following SDN/NFV principles. We implement FlexRAN as an extension to a modified version of the OpenAirInterface LTE platform, with evaluation results indicating the feasibility of using FlexRAN under the stringent time constraints posed by the RAN. To demonstrate the effectiveness of FlexRAN as an SD-RAN platform and highlight its applicability for a diverse set of use cases, we present three network services deployed over FlexRAN focusing on interference management, mobile edge computing and RAN sharing.
While experimental work in the context of 5G has gained significant traction over the past few years, the focus has mainly been on testing the features and capabilities of novel designs and architectures using very simple testbed setups. However, with the emergence of network slicing as a key feature of 5G, creating larger scale infrastructures capable of supporting virtualized end-to-end mobile network services is of paramount importance for experimentation. In this work, we describe our experience in building such a prototype cross-domain testbed targeting 5G use cases, by enabling multi-tenancy through the virtualization of the underlying infrastructure. The capabilities of the testbed are demonstrated through the use case of neutral-host indoor small-cell deployments, followed by a discussion on the challenges we faced while building the testbed, which open up new research opportunities in this space. CCS CONCEPTS• Networks → Wireless access points, base stations and infrastructure; Network experimentation; Mobile networks;
We consider indoor mobile access, a vital use case for current and future mobile networks. For this key use case, we outline a vision that combines a neutral-host based shared small-cell infrastructure with a common pool of spectrum for dynamic sharing as a way forward to proliferate indoor small-cell deployments and open up the mobile operator ecosystem. Towards this vision, we focus on the challenges pertaining to managing access to shared spectrum (e.g., 3.5GHz US CBRS spectrum). We propose Iris, a practical shared spectrum access architecture for indoor neutral-host small-cells. At the core of Iris is a deep reinforcement learning based dynamic pricing mechanism that efficiently mediates access to shared spectrum for diverse operators in a way that provides incentives for operators and the neutral-host alike.We then present the Iris system architecture that embeds this dynamic pricing mechanism alongside cloud-RAN and RAN slicing design principles in a practical neutral-host design tailored for the indoor small-cell environment. Using a prototype implementation of the Iris system, we present extensive experimental evaluation results that not only offer insight into the Iris dynamic pricing process and its superiority over alternative approaches but also demonstrate its deployment feasibility. Index TermsIndoor mobile access, small cells, neutral host, RAN slicing, C-RAN, shared spectrum, dynamic pricing, deep reinforcement learning.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.