Lithium‐ion batteries have exerted great influence on our daily life as important power supply. However, lithium‐ion batteries suffer from critical challenges, including dendrite effect and insufficient ion kinetics, which lead to low efficiency and poor cycling. Bio‐inspired structures, directly learned from nature, have some special characteristics with good mechanical properties, including large surface area, numerous active sites, and ion channels. The large surface area can accommodate more ions, and active sites facilitate intermediate conversion. The well‐designed ion channels are beneficial to ion migration, and then greatly promote charge–discharge processes. Here, we summarize typical bio‐inspired structures for lithium‐ion batteries, discuss influence of these structures on battery performance. Based on the theoretical analysis and our experimental experience, we highlight the design requirement of bio‐inspired structures to enable battery devices with high power density and stable cycling life. Finally, perspectives on existing issues in the filed have been made for future directions.
Metrics & MoreArticle Recommendations CONSPECTUS: Global climate change caused by the excessive emission of greenhouse gases has become one of the greatest threats to human survival in the 21st century. Carbon dioxide is the main greenhouse gas on earth and has brought about serious environmental problems nowadays. On the basis of the current situation, it is urgent to reach the peak of carbon dioxide emission and then achieve carbon neutrality via policy support and engineering strategies within advanced materials and technologies. Carbon neutrality requires an appropriate balance between the emission and reduction of carbon dioxide. The emission of carbon dioxide mainly comes from modern industries, and the reduction requires several steps, including capture, conversion, and application. On one hand, it can reduce carbon dioxide emission by promoting the transformation of industrial structure. On the other hand, it is necessary to remove high-level carbon dioxide existing in the atmosphere by physical and chemical methods such as adsorption capture and catalytic conversion. This Account showcases our recent progress on carbon neutrality for the reduction of carbon dioxide through capture and conversion methods within advanced materials and technologies. We mainly focus on the right side of the carbon scale and have made some advances such as moisture-swing chemisorption for carbon dioxide capture, the reduction of oxygen-containing carbon dioxide, and the photothermal catalytic conversion of carbon dioxide. Different from previous studies, our work is about developing materials and techniques for practical applications. First, we have made attempts to develop cheap sorbents with high stability and a high adsorption capacity. Second, we have reported a moisture-swing technique with the capability of directly capturing carbon dioxide from the atmosphere by relying on the humidity variation with low energy consumption. This technique is promising for realizing real-time carbon dioxide capture and utilization, which avoids high-cost storage and transport processes. Third, our work on carbon dioxide utilization focuses on efficient conversion under practical conditions. For instance, we have developed perovskite catalysts for converting carbon dioxide to carbon monoxide in an oxygen-containing environment. Furthermore, core−shell catalysts have been reported for carbon dioxide conversion with a high selectivity of 83% driven by solar energy. In addition, practical applications of captured carbon dioxide have been explored with respect to carbon dioxide-assisted graphene exfoliation, keeping fruit fresh, and crop growth promotion with carbon dioxide gas fertilizer. A future perspective on the challenges and opportunities for carbon neutrality has been provided on the basis of our experimental studies and theoretical predictions. It is expected that this Account will promote tremendous effort in the development of advanced materials and engineering technologies toward the realization of carbon neutrality by the middle...
Piezoionic strain sensors have attracted enormous attention in artificial skin perception because of high sensitivity, lightweight, and flexibility. However, their sensing properties are limited by a weak material interface based on physical adhesion, which usually leads to fast performance deterioration under mechanical conditions. In this work, a bio-inspired interface has been reported based on an in situ growth strategy and then utilized for piezoionic sensor assembly. The robust coupling interface provides fast kinetic of ion transfer and prevents interface slippage under external strains. The as-fabricated sensors give high sensing voltage with high sensitivity. It delivers excellent cycling stability with performance retention above 90% over thousands of bending cycles in air. Further, the sensors have been explored as an effective platform for skin perception, and many detections can be realized within our devices, such as skin touch, eye movement, cheek bulging, and finger movement.
Solid electrolytes with fast ion kinetics and superior mechanical properties are critical to electrochemical energy devices; however, how to design low-cost, high-performance solid electrolytes has become a critical challenge in the energy field, and significant progress has not been achieved until now.Here, lake-water-based semisolid electrolytes with a low cost of 1.89 $ kg −1 have been put forward for the purpose of market promotion. By virtue of the palygorskite dopants and lake water source, the electrolytes display satisfying mechanical, electrical, and electrochemical properties as well as economic benefits. The application potential of electrolytes has been demonstrated by employing a polyelectrolyte with ionic conductivity of 0.82 × 10 −4 S cm −1 in flexible supercapacitors. The as-assembled devices give a high energy density of 54.72 Wh kg −1 and excellent cycling stability with a capacity retention of 94.8% over 20 000 cycles. The flexibility of devices has been verified through 5000 repetitive bending tests. Our work presents insight into the design of flexible solid electrolytes based on cheap and green raw materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.