Proper settings of key process variables are critical to the product quality control of mass-producing batch processes. The most widely used method in searching for the optimal process condition is the model-based optimization method (MBO). However, model development could be a challenging task in many cases. The accuracy of the model may deteriorate when the process conditions are changed. A systematic, model-free optimization method (MFO) for a type of batch process with a short cycle time and low operational cost is proposed to improve the efficiency of quality control. Instead of building a quality model, a direct search for the optimum process condition using experimental measurements is applied. Optimization algorithm is implemented as well to improve the search efficiency; both the gradient-based and the gradient-free optimization methods are discussed. The simultaneous perturbation stochastic approximation (SPSA) and the simplex search algorithm are incorporated in the MFO. The MFO method was applied to the quality control of injection molding process for demonstration using the part weight, part dimension, and focal length of molded products as quality measurements. A comparison with the Kriging modeling and optimization technique is also presented. The experimental results proved the effectiveness of the MFO technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.