Background. Endometrial cancer is associated with a high mortality rate, which warrants the identification of novel diagnostic markers and therapeutic targets. The aim of this study is to evaluate the role of SNORD15B in the development of endometrial cancer and explore the potential underlying mechanisms. Methods. Bioinformatics was used to analyze the expression level and prognostic relevance of SNORD15B in endometrial cancer. The Ishikawa and HEC-1B cells were respectively transfected with SNORD15B expression plasmid and an antisense oligonucleotide, or the corresponding empty vector and a nonspecific sequence. The malignant phenotype of the suitably transfected cells was assessed by standard in vitro functional assays and the establishment of in vivo xenografts. The expression levels of the specific markers were analyzed with RT-qPCR and western blotting. The subcellular localization of P53 was determined by analyzing the nuclear and cytoplasmic fractions. RIP, Co-IP, and immunohistochemistry were performed as per standard protocols. Results. SNORD15B was overexpressed in the endometrial cancer tissues and correlated to a poor prognosis. Ectopic expression of SNORD15B in Ishikawa cells inhibited apoptosis, increased the proliferation, invasion, and migration in vitro, and enhanced their tumorigenicity in vivo. SNORD15B overexpression also upregulated TRIM25 and accelerated P53 accumulation in the cytoplasm of the endometrial cancer cells. Conclusion. SNORD15B functions as an oncogene in endometrial cancer by targeting the TRIM25/P53 complex and blocking the nuclear translocation of P53.
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs widely distributed in eukaryotic nucleoli. In recent years, studies have revealed that snoRNAs can also participate in the occurrence and development of malignant tumors through different pathways. Cervical cancer is one of the most common malignant tumors of the female reproductive system, and the high-risk HPV virus infection is its main pathogenic mechanism. However, the outcomes in different patients with malignant tumors vary, indicating that other factors might affect the pathogenic process of cervical cancer. In this study, we screened the poor prognosis indicator SNORD6 from the TCGA database to find the snoRNA that affects the disease outcome during the pathogenesis of cervical cancer. We discovered that SNORD6 expression in cervical cancer tissues was higher than that in normal cervical tissues. Cell phenotype experiments revealed that the knockdown of SNORD6 retarded cell proliferation and plate clone formation. Furthermore, G1-S phase cell cycle arrest was induced, DNA synthesis was decreased, cell migration and invasion were reduced, while the level of apoptosis increased, whereas the opposite results were obtained after SNORD6 overexpression. Moreover, after intratumoral injection of ASO-SNORD6, the tumor growth rate slowed down, and the tumor volume decreased compared with the control group. In the mechanism study, we found that SNORD6 concurrently acted as a binding “hub” to promote the formation of the tumor suppressor protein p53 degradation complex E6-E6AP-p53. This reaction enhanced the ubiquitination and degradation of p53, thus influenced the regulation of p53 activities in the cell cycle and apoptosis. This study preliminarily clarified the biological role and specific mechanism of SNORD6 in the occurrence of cervical cancer, broadening the basic theoretical research of ovarian cancer and may provide a new perspective on the diagnosis and treatment of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.