A portable multichannel surface plasmon resonance (SPR) biosensor device is presented in this study. As an optical biosensor device, the core component of its light path is a semi-cylindrical prism, which is used as the coupling unit for the excitation of the SPR phenomena. Based on this prism, a wedge-shaped incident light beam including a continuous angle range (10°) is chosen to replace the commonly-used parallel light beam in traditional SPR devices, in which the incident angle is adjusted by a sophisticated mechanical system. Thus, complicated, cumbersome, and costly mechanical structures can be avoided in this design. Furthermore, the selection of a small and high-stability semiconductor laser and matrix CCD detector as well as a microfluidic system aids in the realization of a miniaturized and multichannel device. Several different samples were used to test the performance of this new device. For ethanol with different concentrations, the sensing response was of good linear relativity with the concentration (Y = 3.17143X + 2.81518, R2 = 0.97661). Mouse IgG and goat anti-mouse IgG were used as biological samples for immunological analysis, and BSA as the control group. Good specific recognition between mouse IgG and goat anti-mouse IgG has been achieved. The detection limit of antibody to antigen coated on the sensing surface was about 25 mg/L without surface modification.
Microbial degradation is an effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) compounds from polluted sediments. Surface sediments collected from Yangtze River in the downtown area of Chongqing were found to contain PAH concentrations to various different degrees. Two bacteria strains (termed PJ1 and PJ2) isolated from the sediment samples could use phenanthrene (Phe) and fluoranthene (Flu) as carbon sources for growth thereby degrading these two PAH compounds. Using 16S rDNA gene sequencing, the isolates were identified as Sphingomonas sp. and Klebsiella sp., respectively. Biodegradation assays showed that the PJ1 presented an efficient degradation capability compared to PJ2 in cultures with the initial Phe and Flu concentrations ranging from 20 to 200 mg/L. The highest rates of Phe and Flu biodegradation by PJ1 reached 74.32% and 58.18% after incubation for 15 and 30 days, respectively. This is the first report on the biodegradation potential of the bacterial from surface sediments of an industrial area upstream of the Gorge Reservoir.
An improved diethyl ether (DEE) reaction mechanism consisting of 174 species and 973 reactions has been proposed. The present model is derived from an original model of Yasunaga et al. [A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidationYasunagaK.GillespieF.SimmieJ. M.CurranH. J.KuraguchiY.HoshikawaH.YamaneM.HidakaY. Yasunaga, K. Gillespie, F. Simmie, J. M. Curran, H. J. Kuraguchi, Y. Hoshikawa, H. Yamane, M. Hidaka, Y. J. Phys. Chem. A201011490989109]. On the basis of shock tube results in the temperature range of 900–1900 K, pressure range of 1–40 bar, and equivalence ratios of 0.5–2 as well as rapid compression machine (RCM) measurements of a stoichiometric DEE/O2/inert gas mixture at temperatures of 500–900 K and pressures of 3–4 bar, the ignition delay times (IDTs) were validated. Two-stage ignition at temperatures below 650 K and negative temperature coefficient (NTC) behavior at temperatures between 621 and 746 K are observed. In addition, the freely propagating flame velocities of a stoichiometric DEE/air mixture were validated at various temperatures as well. Using directed relation graph (DRG)-based methods for the improved mechanism reduction, a reduced mechanism composed of 80 species and 329 reactions has been achieved. Calculations for IDTs, laminar flame velocities, and temperature and species profiles using the reduced mechanism show very close agreement with those obtained using the improved mechanism. Meanwhile, sensitivity analyses of the burning velocity and IDT for the improved and reduced mechanisms were performed. Competing reactions related to DEE + OH and consumption of C2H5OC2H4s and HO2 were identified as being important for IDTs at various temperatures.
Herein, the unique two-layered sandwiched graphene@(Li0.893Fe0.036)Co(PO4) nanoparticles, which presents outstanding electrochemical performances, have been successfully fabricated through the template-sacrificial method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.