Low rank and sparse representation (LRSR) with dual-dictionaries-based methods for detecting anomalies in hyperspectral images (HSIs) are proven to be effective. However, the potential anomaly dictionary is vulnerable to being contaminated by the background pixels in the above methods, and this limits the effect of hyperspectral anomaly detection (HAD). In this paper, a dual dictionaries construction method via two-stage complementary decision (DDC–TSCD) for HAD is proposed. In the first stage, an adaptive inner window–based saliency detection was proposed to yield a coarse binary map, acting as the indicator to select pure background pixels. For the second stage, a background estimation network was designed to generate a fine binary map. Finally, the coarse binary map and fine binary map worked together to construct a pure background dictionary and potential anomaly dictionary in the guidance of the superpixels derived from the first stage. The experiments conducted on public datasets (i.e., HYDICE, Pavia, Los Angeles, San Diego-I, San Diego-II and Texas Coast) demonstrate that DDC–TSCD achieves satisfactory AUC values, which are separately 0.9991, 0.9951, 0.9968, 0.9923, 0.9986 and 0.9969, as compared to four typical methods and three state-of-the-art methods.
Sparse representation (SR)-based approaches and collaborative representation (CR)-based methods are proved to be effective to detect the anomalies in a hyperspectral image (HSI). Nevertheless, the existing methods for achieving hyperspectral anomaly detection (HAD) generally only consider one of them, failing to comprehensively exploit them to further promote the detection performance. To address the issue, a novel HAD method, which integrates both sparse representation and collaborative representation (SRCR), is proposed in this paper. To be specific, a SR model, whose overcomplete dictionary is generated by means of the density-based clustering algorithm and superpixel segmentation method, is firstly constructed for each pixel in an HSI. Then, for each pixel in an HSI, the used atoms in SR model are sifted to form the background dictionary corresponding to the CR model. To fully exploit both SR and CR information, we further combine the residual features obtained from both SR and CR model by the nonlinear transformation function to generate the response map. Finally, to preserve contour information of the objects, a postprocessing operation with guided filter is imposed into the response map to acquire the detection result. Experiments conducted on simulated and real data sets demonstrate that the proposed SRCR outperforms the state-of-the-art methods.
Low rank and sparse representation (LRSR) technique has attracted increasing attention for hyperspectral anomaly detection (HAD). Although a large quantity of researches based on LRSR for HAD is proposed, the detection performance is still limited, due to the unsatisfactory dictionary construction and insufficient consideration of global and local characteristics. To tackle above concern, a novel HAD method, termed as dual collaborative constraints regularized low rank and sparse representation via robust dictionaries construction (DCC-LRSR-RDC), is proposed in this paper. Concretely, a robust dictionary construction strategy, which thoroughly excavates the potential of density estimation model and local outlier factor, is proposed to yield pure and representative dictionary atoms. To fully exploit the global and local characteristics of HSI, dual collaborative constraints corresponding to the background and anomaly components are imposed on the LRSR model. Notably, two weighted matrices are further exerted on the representation coefficients to improve the effect of collaborative constraints, considering the fact that the surrounding pixels similar to the testing pixel should be given large weight, otherwise the weight is expected to be small. In this way, the background and anomaly components can be well modeled. Additionally, a nonlinear transformation operation, which combines the output of the density estimation model and local outlier factor with the detection result derived from the LRSR model, is developed to suppress the background. The experiments conducted on one simulated dataset and three real datasets demonstrate the superiority of the proposed method compared with the four typical methods and four state-of-the-art methods.
Recently, the isolation forest (IF) methods have received increasing attention for their promising performance in hyperspectral anomaly detection (HAD). However, limited by the ability of exploiting spatial-spectral information, existing IF-based methods suffer from a lot of false alarms and disappointing performance of detecting local anomalies. To overcome the two problems, a multiscale superpixel guided discriminative forest method is proposed for HAD. First, the multiscale superpixel segmentation is employed to generate some homogeneous regions, and it can effectively extract spatial information to guide anomaly detection for the discriminative forest in local areas. Then, a novel discriminative forest (DF) model with the gain split criterion is designed, which enhances the sensitivity of the DF to local anomalies by the utilization of multi-dimension spectral bands for node division; meanwhile, the acceptable range of hyperplane attribute values is introduced to capture any unseen anomaly pixels that are out-of-range in the evaluation stage. Finally, for the high false alarm rate situation in the existing IF-based algorithms, the multiscale fusion with guided filtering is put forward to refine the initial detection results from the DF. In addition, the extensive experimental results on four real hyperspectral datasets demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.