Acid chaperones are essential factors in preserving the protein homeostasis for enteric pathogens to survive in the extremely acidic mammalian stomach (pH 1-3). The client proteins of these chaperones remain largely unknown, primarily because of the exceeding difficulty of determining protein-protein interactions under low-pH conditions. We developed a genetically encoded, highly efficient protein photocrosslinking probe, which enabled us to profile the in vivo substrates of a major acid-protection chaperone, HdeA, in Escherichia coli periplasm. Among the identified HdeA client proteins, the periplasmic chaperones DegP and SurA were initially found to be protected by HdeA at a low pH, but they subsequently facilitated the HdeA-mediated acid recovery of other client proteins. This unique, ATP-independent chaperone cooperation in the ATP-deprived E. coli periplasm may support the acid resistance of enteric bacteria. The crosslinker would be valuable in unveiling the physiological interaction partners of any given protein and thus their functions under normal and stress conditions.
The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.
DegP (also designated as HtrA) and its homologs are found in prokaryotic cells and such eukaryotic organelles as mitochondria and chloroplasts. DegP has been found to be essential for the growth of Gram-negative bacteria under heat shock conditions and arguably considered to possess both protease and chaperone activities. The function of DegP has not been clearly defined. Using genetically incorporated non-natural amino acids as photo-crosslinkers, here we identified the b-barrel outer membrane proteins (OMPs) as the major natural substrates of DegP in Escherichia coli cells. We also demonstrated that DegP primarily functions as a protease, at both low and high temperatures, to eliminate unfolded OMPs, with hardly any appreciable chaperone activity in cells. We also found that the toxic and cell membrane-damaging misfolded OMPs would accumulate in DegP-lacking cells cultured under heat shock conditions. Together, our study defines the primary function of DegP in OMP biogenesis and offers a mechanistic insight into the essentiality of DegP for cell growth under heat shock conditions.
Structured digital abstractDegP physically interacts with ompA by pull down (1, 2) DegP physically interacts with ompX, ompA, ompW, ompF, nmpC and ompC by pull down (View interaction) DegP physically interacts with ompC and ompF by pull down (View interaction) DegP physically interacts with ompC and ompA by pull down (View interaction) DegP physically interacts with ompC, malE, fkpA, ompW, ompA, ompF, nmpC and ompX by cross-linking study (View interaction)
The outer membrane proteins (OMPs) of Gram-negative bacterial cells, as well as the mitochondrion and chloroplast organelles, possess unique and highly stable -barrel structures. Biogenesis of OMPs in Escherichia coli involves such periplasmic chaperones as SurA and Skp. In this study, we found that the ⌬surA ⌬skp double-deletion strain of E. coli, although lethal and defective in the biogenesis of OMPs at the normal growth temperature, is viable and effective at the heat shock temperature. We identified FkpA as the multicopy suppressor for the lethal phenotype of the ⌬surA ⌬skp strain. We also demonstrated that the deletion of fkpA from the ⌬surA cells resulted in only a mild decrease in the levels of folded OMPs at the normal temperature but a severe decrease as well as lethality at the heat shock temperature, whereas the deletion of fkpA from the ⌬skp cells had no detectable effect on OMP biogenesis at either temperature. These results strongly suggest a functional redundancy between FkpA and SurA for OMP biogenesis under heat shock stress conditions. Mechanistically, we found that FkpA becomes a more efficient chaperone for OMPs under the heat shock condition, with increases in both binding rate and affinity. In light of these observations and earlier reports, we propose a temperature-responsive OMP biogenesis mechanism in which the degrees of functional importance of the three chaperones are such that SurA > Skp > FkpA at the normal temperature but FkpA > SurA > Skp at the heat shock temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.