It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m−1 K−2 and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.
C1 inhibitor (C1INH) is beneficial in animal models of endotoxemia and sepsis. However, the mechanism(s) of C1INH protection remain(s) ill-defined. In this study, we demonstrated that both active C1INH and reactive center-cleaved, inactive C1INH protected mice from lethal Gram-negative endotoxemia. Both forms of C1INH blocked the LPS-binding protein-dependent binding of Salmonella typhimurium LPS to the murine macrophage cell line, RAW 264.7, and suppressed LPS-induced TNF-α mRNA expression. Inhibition of LPS binding to RAW 264.7 cells was reversed with anti-C1INH Ab and was more efficient when C1INH was incubated first with LPS rather than with the cells. C1INH also suppressed LPS-induced up-regulation of TNF-α mRNA in whole human blood. The interaction of C1INH with LPS was directly demonstrated both by ELISA and by nondenaturing PAGE, but deletion of the amino-terminal 97-aa residues abrogated this binding. Therefore, C1INH, in addition to its function as a serine protease inhibitor, has a novel anti-inflammatory function mediated via its heavily glycosylated amino-terminal non-serpin domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.