Recent large-scale seagrass declines have prompted experimental investigations of potential mechanisms. Although many studies have implicated eutrophication or reductions of epi-phyte grazers in these declines, few experiments have simultaneously manipulated both factors to assess their relative effects. This study used meta-analyses of 35 published seagrass studies to compare the relative strength of 'top-down' grazer effects and 'bottom-up' nutrient effects on epiphyte biomass and seagrass above-ground growth rate, above-ground biomass, below-ground biomass, and shoot density. A surprising result was that seagrass growth and biomass were limited in situ by sediment nutrients; light limitation has been emphasized in the literature to date. Water column enrichments, which were correlated with increased epiphyte biomass, had strong negative effects on seagrass biomass. Grazers overall had a positive effect on shoot density, but negligible effects on sea-grass biomass and growth rate. However, analyzing epiphyte grazers separately from other grazers revealed positive effects of grazing on seagrass response variables and corresponding negative impacts on epiphyte biomass. The positive effects of epiphyte grazers were comparable in magnitude to the negative impacts of water column nutrient enrichment, suggesting that the 2 factors should not be considered in isolation of each other. Until the determinants of epiphyte grazer populations are empirically examined, it will be difficult to address the contribution that overfishing and cascading trophic effects have had on seagrass decline. Because increases in water column nutrients are documented in many regions, efforts to reduce coastal eutrophication are an appropriate and necessary focus for the management and conservation of seagrass ecosystems. KEY WORDS: Seagrasses · Meta-analysis · Epiphyte · Nutrients · Grazers · Management · Eutrophication · Top-down/bottom-up Resale or republication not permitted without written consent of the publisher herbivory, and substratum turnover. Limnol Oceanogr 32: 986-992 Brooks JL, Dodson SI (1965) Predation, body size and composition of plankton. Science 150:28-35 Camp DK, Cobb SP, Van Breedfield JV (1973) Overgrazing of seagrasses by a regular urchin, Lytechinus variegatus.
Generalized additive models (GAMs) were applied to examine the relative influence of various factors on fishery performance, defined as nominal catch‐ per‐unit‐effort (CPUE) of swordfish (Xiphias gladius) and blue shark (Prionace glauca) in the Hawaii‐based swordfish fishery. Commercial fisheries data for the analysis consisted of a 5 year (1991–1995) time series of 27 901 longline sets. Mesoscale relationships were analysed for seven physical variables (latitude, longitude, SST, SST frontal energy, temporal changes in SST (ΔSST), SST frontal energy (ΔSST frontal energy) and bathymetry), all of which may affect the availability of swordfish and blue shark to the fishery, and three variables (number of lightsticks per hook, lunar index, and wind velocity) which may relate to the effectiveness of the fishing gear. Longline CPUE data were analysed in relation to SST data on three spatiotemporal scales (18 km weekly, 1°‐weekly, 1°‐monthly). Depending on the scale of SST data, GAM analysis accounted for 39–42% and 44–45% of the variance in nominal CPUE for swordfish and blue shark, respectively. Stepwise GAM building revealed the relative importance of the variables in explaining the variance in CPUE. For swordfish, by decreasing importance, the variables ranked: (1) latitude, (2) time, (3) longitude, (4) lunar index, (5) lightsticks per hook, (6) SST, (7) ΔSST frontal energy, (8) wind velocity, (9) SST frontal energy, (10) bathymetry, and (11) ΔSST. For blue shark, the variables ranked: (1) latitude, (2) longitude, (3) time, (4) SST, (5) lightsticks per hook, (6) ΔSST, (7) ΔSST frontal energy, (8) SST frontal energy, (9) wind velocity, (10) lunar index, and (11) bathymetry. Swordfish CPUE increased with latitude to peak at 35–40°N and increased in the vicinity of temperature fronts and during the full moon. Shark CPUE also increased with latitude up to 40°N, and increased westward, but declined abruptly at SSTs colder than 16°C. As a comparison with modelling fishery performance in relation to specific environmental and fishery operational effects, fishery performance was also modelled as a function of categorical time (month) and area (2° squares) variables using a generalized linear model (GLM) approach. The variance accounted for by the GLMs was ≈ 1–3% lower than the variance explained by the GAMs. Time series of swordfish and blue shark CPUE standardized for the environmental and operational variables quantified in the GAM and for the time‐area effects in the GLM are presented. For swordfish, both nominal and standardized time series indicate a decline in CPUE, whereas the opposite trend was seen for blue shark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.