Abstract:Object-based point cloud analysis (OBPA) is useful for information extraction from airborne LiDAR point clouds. An object-based classification method is proposed for classifying the airborne LiDAR point clouds in urban areas herein. In the process of classification, the surface growing algorithm is employed to make clustering of the point clouds without outliers, thirteen features of the geometry, radiometry, topology and echo characteristics are calculated, a support vector machine (SVM) is utilized to classify the segments, and connected component analysis for 3D point clouds is proposed to optimize the original classification results. Three datasets with different point densities and complexities are employed to test our method. Experiments suggest that the proposed method is capable of making a classification of the urban point clouds with the overall classification accuracy larger than 92.34% and the Kappa coefficient larger than 0.8638, and the classification accuracy is promoted with the increasing of the point density, which is meaningful for various types of applications.
This paper presents an automated and effective method for detecting 3D edges and tracing feature lines from 3D-point clouds. This method is named Analysis of Geometric Properties of Neighborhoods (AGPN), and it includes two main steps: edge detection and feature line tracing. In the edge detection step, AGPN analyzes geometric properties of each query point's neighborhood, and then combines RANdom SAmple Consensus (RANSAC) and angular gap metric to detect edges. In the feature line tracing step, feature lines are traced by a hybrid method based on region growing and model fitting in the detected edges. Our approach is experimentally validated on complex man-made objects and large-scale urban scenes with millions of points. Comparative studies with state-of-the-art methods demonstrate that our method obtains a promising, reliable, and high performance in detecting edges and tracing feature lines in 3D-point clouds. Moreover, AGPN is insensitive to the point density of the input data.
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
Design of crystal materials requires predicting the ability of bulk materials to form single crystals, challenging current theories of material design. By introducing a concept of condensing potential (CP), it is shown via vast simulations of crystal growth for fcc (Ni, Cu, Al, Ar) and hcp (Mg), that materials with larger CP can grow into perfect single crystal more easily. Due to the simplicity of the calculation of CP, this method might prove a convenient way to evaluate the ability of materials to form single crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.