To the best of our knowledge, the application of deep learning in the field of quantitative risk management is still a relatively recent phenomenon. In this article, we utilize techniques inspired by reinforcement learning in order to optimize the operation plans of underground natural gas storage facilities. We provide a theoretical framework and assess the performance of the proposed method numerically in comparison to a state-of-the-art least-squares Monte-Carlo approach. Due to the inherent intricacy originating from the high-dimensional forward market as well as the numerous constraints and frictions, the optimization exercise can hardly be tackled by means of traditional techniques.
To the best of our knowledge, the application of deep learning in the field of quantitative risk management is still a relatively recent phenomenon. In this article, we utilize techniques inspired by reinforcement learning in order to optimize the operation plans of underground natural gas storage facilities. We provide a theoretical framework and assess the performance of the proposed method numerically in comparison to a state-of-the-art least-squares Monte-Carlo approach. Due to the inherent intricacy originating from the high-dimensional forward market as well as the numerous constraints and frictions, the optimization exercise can hardly be tackled by means of traditional techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.