Hearing impairment due to the loss of sensory hair cells is permanent in humans. Considerable interest targets the hair cell differentiation factor Atoh1 as a potential tool with which to promote hair cell regeneration. We generated a novel mouse model to direct the expression of Atoh1 in a spatially and temporally specific manner in the postnatal mammalian cochlea to determine the competency of various types of cochlear epithelial cells for hair cell differentiation. Atoh1 can generate cells in young animals with morphological, molecular, and physiological properties reminiscent of hair cells.This competency is cell type specific and progressively restricted with age. Significantly, Atoh1 induces ectopic sensory patches through Notch signaling to form a cellular mosaic similar to the endogenous sensory epithelia and expansion of the sensory mosaic through the conversion of supporting cells and nonautonomous supporting cell production. Furthermore, Atoh1 also activates proliferation within the normally postmitotic cochlear epithelium. These results provide insight into the potential and limitations of Atoh1-mediated hair cell regeneration.
Dysfunction of gap junctions (GJs) caused by mutations in connexin26 (Cx26) and Cx30 accounts for nearly half of all cases of hereditary nonsyndromic deafness cases. Although it is widely held that GJs connecting supporting cells in the organ of Corti mainly provide ionic pathways for rapid removal of K ؉ around the base of hair cells, the function of GJs in the cochlea remains unknown. Here we show that GJs were not assembled in the supporting cells of the organ of Corti until 3 days after birth in mice and then gradually matured to connect supporting cells before the onset of hearing. In organotypic cochlear cultures that were confirmed to express GJs, GJs mediated the propagation of intracellular Ca 2؉ concentration waves in supporting cells by allowing intercellular diffusion of inositol 1,4,5-trisphosphate. We found that a subset of structurally mild Cx26 mutations located at the second transmembrane region (V84L, V95M, and A88S) and a Cx30 mutation located at the first cytoplasmic segment (T5M) specifically affect the intercellular exchange of larger molecules but leave the ionic permeability intact. Our results indicated that Cx26 and Cx30 mutations that are linked to sensorineural deafness retained ionic coupling but were deficient in biochemical permeability. Therefore, GJ-mediated intercellular exchange of biochemically important molecules is required for normal cochlear functions.connexin ͉ deafness ͉ mutation
Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF −/− pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.
This work focuses on the investigation of the memory effect origin in atmospheric pressure Townsend discharges in nitrogen/oxidizing gas mixtures. For this purpose, an experimental approach is used on a plane-to-plane dielectric barrier discharge, using short exposure time photographs of the discharge with interference filters, synchronized with the discharge current. A segmented electrode into eight strips allows to correlate the discharge current and light emissions from different species in time and space (position along the gas flow). The results highlight the occurence of a memory effect involving oxidizing species when an oxidizing gas is added to nitrogen. A comparison of the discharge for different gas gaps, and the parallel drawn with a numerical 1-D model in pure nitrogen, suggests the importance and the predominance of this memory effect compared to the secondary electron emission by N2(A) which was considered to be the dominant mechanism up to now.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.