The coupled modified nonlinear Schrödinger equations are under investigation in this work. Starting from analyzing the spectral problem of the Lax pair, a Riemann-Hilbert problem for the coupled modified nonlinear Schrödinger equations is formulated. And then, through solving the obtained Riemann-Hilbert problem under the conditions of irregularity and reflectionless case, N-soliton solutions for the equations are presented. Furthermore, the localized structures and dynamic behaviors of the one-soliton solution are shown graphically.
We aim to construct multi-soliton solutions for the coupled Fokas–Lenells system which arises as a model for describing the nonlinear pulse propagation in optical fibers. Starting from the spectral analysis of the Lax pair, a Riemann–Hilbert problem is presented. Then in the framework of the Riemann–Hilbert problem corresponding to the reflectionless case, N-soliton solutions to the coupled Fokas–Lenells system are derived explicitly.
This paper studies the N-soliton solutions of the generalized nonlinear Schrödinger equation. Firstly, the spectral analysis of a Lax pair is carried out. Secondly, the Riemann–Hilbert (RH) problem is established. Finally, the RH problem without reflection is considered and the expression of general N-soliton solutions of the equation is obtained.
In this paper, we use the Hirota bilinear method to find the [Formula: see text]-soliton solution of a [Formula: see text]-dimensional generalized Kadovtsev–Petviashvili (KP) equation. Then, we obtain the [Formula: see text]-order breathers of the equation, and combine the long-wave limit method to give the [Formula: see text]-order lumps. Resorting to the extended homoclinic test technique, we obtain the breather-kink solutions for the equation. Last, the interaction solution composed of the [Formula: see text]-soliton solution, [Formula: see text]-breathers, and [Formula: see text]-lumps for the [Formula: see text]-dimensional generalized KP equation is constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.