The promise of nanobiomaterials for diagnostic and therapeutic biomedical applications has been widely reported throughout the scientific community, and great strides have been made in those directions. And yet, the translation of nanomaterial-based therapeutics to clinical applications remains an elusive target. Many challenges have blocked the usage of nanomaterials in biomedicine, including potential toxicity, immunogenicity, and decreased efficacy. In order to overcome some of these issues, detailed studies have been undertaken to understand fundamental interactions between nanomaterials and the biological environment. In particular, recent developments in nanoparticle synthesis, a better understanding and control over nanoparticle surface chemistry, as well as the organization of that chemistry on the nanoparticle surface, has allowed researchers to begin to understand how spatial arrangement of atomic and molecular species at an interface can affect protein adsorption, structure, and subsequent biological outcomes. This perspective strives to identify ways in which the nanomaterial interface can be controlled to affect interactions with biomolecules for beneficial biomedical applications.
A uniform three-dimensional (3D) gold nanoparticle (AuNP)-embedded porous graphene (AuEPG) thin film has been fabricated by electrostatic layer-by-layer assembly of AuNPs and graphene nanosheets functionalized with bovine serum albumin and subsequent thermal annealing in air at 340 °C for 2 h. Scanning electron microscopy (SEM) investigations for the AuEPG film indicate that an AuNP was embedded in every pore of the porous graphene film, something that was difficult to achieve with previously reported methods. The mechanism of formation of the AuEPG film was initially explored. Application of the AuEPG film in electrochemical sensing was further demonstrated by use of H(2)O(2) as a model analyte. The AuEPG film-modified electrode showed improved electrochemical performance in H(2)O(2) detection compared with nonporous graphene-AuNP composite film-modified electrodes, which is mainly attributed to the porous structure of the AuEPG film. This work opens up a new and facile way for direct preparation of metal or metal oxide nanoparticle-embedded porous graphene composite films, which will enable exciting opportunities in highly sensitive electrochemical sensors and other advanced applications based on graphene-metal composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.