Potted Italian ryegrasses (Lolium multiflorum L.) were used to investigate the effect of ammonia-oxidizing bacterial (AOB) strain that coexisted in rhizosphere soil on Italian ryegrass regrowth. The results showed that the isolated and screened AOB strain (S2_8_1) had 100% similarity to Ensifer sesbaniae. The inoculation of S2_8_1 on day 44 before defoliation caused its copy number in rhizosphere soils to increase by 83–157% from day 34 before defoliation to day 14 after defoliation compared with that in Italian ryegrass without S2_8_1 inoculation, indicating that S2_8_1 coexisted permanently with Italian ryegrass. The coexistence promoted the delivery of root-derived cytokinin to leaves and to increase its cytokinin concentrations; thus, the Italian ryegrass regrowth accelerated. During the 14-day regrowth period, the S2_8_1 coexistence with Italian ryegrass caused its leaf and xylem sap cytokinin concentrations, rhizosphere soil nitrification rates, net photosynthetic rates, and total biomass to increase by 38%, 58%, 105%, 18%, and 39% on day 14 after defoliation, respectively. The inoculation of S2_8_1 on day 2 before defoliation also increased the regrowth of Italian ryegrass. Thus, the coexistence of AOB with Italian ryegrass increased its regrowth by regulating the delivery of cytokinins from roots to leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.