A combination therapy of multiple drugs including isoniazid, rifampicin, ethambutol and pyrazinamide has been proven to be an effective option for the vast majority of tuberculosis (TB) patients. However, various adverse drug reactions (ADRs) limit its merit, with anti-TB drug-induced hepatotoxicity (ATDH) being a common and sometimes severe ADR. This study aimed to investigate the association between polymorphisms in two nuclear receptor genes, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and the risk of ATDH in a Chinese population. Subjects with or without hepatotoxicity during anti-TB treatment were recruited. DNA was extracted from peripheral blood and genotypes of the selected single nucleotide polymorphisms (SNPs) were determined by using the improved multiplex ligation detection reaction technique. Three genetic models (additive, dominant, and recessive) as well as haplotype, SNP-SNP interaction analyses were used to evaluate the genetic risk of ATDH. A total of 502 subjects (203 ATDH and 299 non-ATDH) were enrolled. The results showed that the minor allele of rs7643645 and the H0010001 haplotype in PXR were associated with decreased risk of ATDH, suggesting that drug-metabolizing enzymes regulated by PXR are involved in the pathogenesis of ATDH. More studies are required to verify this result.
Objectives: The association of ULK1 gene polymorphisms with susceptibility to tuberculosis or multisystem tuberculosis remains unclear. Methods: We used a case‒control study in a Chinese Han population and included 411 patients with multisystem tuberculosis and 581 healthy controls. Four tag polymorphisms of the ULK1 gene at loci rs9481, rs7138581, rs11616018 and rs1134574 were selected and genotyped using a SNPscan Kit (Cat#: G0104, Genesky Biotechnologies Inc., Shanghai, China). Results: The minor allele C of rs7138581 showed a significantly reduced risk of susceptibility to multisystemic tuberculosis (OR: 0.759, 95% CI: 0.597-0.965; P=0.025) and showed a significant association after adjusting for age and sex (ORa: 0.770, 95% CI: 0.605-0.980; Pa=0.034). In the analysis of the additive model and dominant model, rs7138581 still showed a significant reduction in the risk of multisystem tuberculosis after adjusting for age and sex (ORa: 0.761, 95% CI: 0.595-0.974; Pa=0.03 and ORa: 0.754, 95% CI: 0.573-0.993; Pa=0.044). Conclusions: rs7138581 of the ULK1 gene may be associated with multisystem tuberculosis susceptibility in the Chinese Han population.
Background Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). Methods A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. Results No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009–1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030–1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). Conclusions The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.