Overuse injuries and trauma in tendon often involve acute or chronic pain and eventual matrix destruction. Anti-inflammatory drugs have been used as a treatment, however, the cellular and molecular mechanisms of the destructive processes in tendon are not clearly understood. It is thought that an inflammatory event may be involved as an initiating factor. Mediators of the inflammatory response include cytokines released from macrophages and monocytes. Interleukin-1 beta (IL-1 p) is a candidate proinflammatory cytokine that is active in connective tissues such as bone and cartilage. We hypothesized that tendon cells would express receptors and respond to IL-1 b in an initial "molecular inflammation" cascade, that is, connective tissue cell expression of cytokines that induce matrix destructive enzymes. This cascade results in expression of matrix metalloproteinases (MMPs) and aggrecanases that may lead to matrix destruction. Normal human tendon cells from six patients were isolated, grown to quiescence and treated with human recombinant IL-lP in serum-free medium for 16 h. Total RNA was isolated and mRNA expression assessed by semiquantitative RT-PCR. IL-lP (1 nM) induced mRNAs for cyclooxygenase 2 (COX2), MMP-I, -3, -13 and aggrecanase-1 as well as IL-1 j3 and IL-6, whereas mRNAs for COX1 and MMP-2 were expressed constitutively. The IL-lj3-treated tendon cells released prostaglandin E2 (PGE2) in the medium, suggesting that the inducible COX2 catalyzed this synthesis. Induction of PGE2 was detectable at 10 pM IL-1 j3. IL-10 also stimulated MMP-1 and -3 protein secretion. Induction of MMP-1 and -3 was detectable at 10 pM IL-1 fi. Post-injury or after some other inciting events, exogenous IL-1 P released upon bleeding or as leakage of local capillaries may drive a proinflammatory response at the connective tissue cell level. The resulting induction of COX2, MMP-1 and -3 may underscore a potential for nonlymphocyte-mediated cytokine production of MMPs that causes matrix destruction and a loss of tendon biomechanical properties. Endogenous IL-1 b might contribute to the process through a positive feedback loop by stimulating expression and accumulation of MMPs in the tendon matrix.
Overexpression of FAK may be part of a mechanism for invasion and metastasis of thyroid cancer. Furthermore, the levels of p125FAK may serve as a marker of biologic behavior in this disease.
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.
Background Analysis of cell-free DNA (cfDNA) is promising for broad applications in clinical settings, but with significant bias towards late-stage cancers. Although recent studies have discussed the diverse and degraded nature of cfDNA molecules, little is known about its impact on the practice of cfDNA analysis. Methods We developed single-strand library preparation and hybrid-capture-based cfDNA sequencing (SLHC-seq) to analysis degraded cfDNA fragments. Next we used SLHC-seq to perform cfDNA profiling in 112 pancreatic cancer patients, and the results were compared with 13 previous reports. Extensive analysis was performed in terms of cfDNA fragments to explore the reasons for higher detection rate of KRAS mutations in the circulation of pancreatic cancers. Findings By applying the new approach, we achieved higher efficiency in analysis of mutations than previously reported using other detection assays. 791 cancer-specific mutations were detected in plasma of 88% patients with KRAS hotspots detected in 70% of all patients. Only 8 mutations were detected in 28 healthy controls without any known oncogenic or truncating alleles. cfDNA profiling by SLHC-seq was largely consistent with results of tissue-based sequencing. SLHC-seq rescued short or damaged cfDNA fragments along to increase the sensitivity and accuracy of circulating-tumour DNA detection. Interpretation We found that the small mutant fragments are prevalent in early-stage patients, which provides strong evidence for fragment size-based detection of pancreatic cancer. The new pipeline enhanced our understanding of cfDNA biology and provide new insights for liquid biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.