Phenylurea herbicides (PHs) are frequently detected as major water contaminants in areas where there is extensive use. In this study, Diaphorobacter sp. strain LR2014-1, which initially hydrolyzes linuron to 3,4-dichloroanaline, and Achromobacter sp. strain ANB-1, which further mineralizes the produced aniline derivatives, were isolated from a linuronmineralizing consortium despite being present at low abundance in the community. The synergistic catabolism of linuron by the consortium containing these two strains resulted in more efficient catabolism of linuron and growth of both strains. Strain LR2014-1 harbors two evolutionary divergent hydrolases from the amidohydrolase superfamily Phh and the amidase superfamily TccA2, which functioned complementarily in the hydrolysis of various types of PHs, including linuron (N-methoxy-N-methyl-substituted), diuron, chlorotoluron, fluomethuron (N,N-dimethyl-substituted), and siduron. These findings show that a bacterial consortium can contain catabolically synergistic species for PH mineralization, and one strain could harbor functionally complementary hydrolases for a broadened substrate range.
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
A novel Gram-stain negative, facultatively anaerobic, non-spore-forming, motile and rod-shaped bacterium (NS-104) was isolated from a propanil-contaminated soil in Nanjing, China. Growth occurred at pH 5.0-9.0 (optimum 6.0), 16-37 °C (optimum 30 °C) and in the presence of 0-2.0% (w/v) NaCl (optimum, without NaCl). Strain NS-104 showed high 16S rRNA gene sequence identity to Rhizobium azooxidifex DSM 100211 (96.7%). The phylogenetic analysis of the 16S rRNA gene as well as the housekeeping genes recA, atpD and glnA demonstrated that strain NS-104 belongs to the genus Rhizobium. Strain NS-104 did not form nodules on six different legumes, and the nodD, nodC and nifH genes were neither amplified by PCR nor found in the draft genome of strain NS-104. The sole respiratory quinone was ubiquinone Q-10. The polar lipid profile included the major amounts phosphatidylmonomethylethanolamine, phosphatidylglycerol and moderate amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and unidentified aminolipids. The major cellular fatty acids were C ω7c (39.6%), C cyclo ω8c (29.8%) and C (11.5%). The G + C content of strain NS-104 was 61.9 mol%. Strain NS-104 therefore represents a new species, for which the name Rhizobium album sp. nov. is proposed, with the type strain NS-104 (= KCTC 62327 = CCTCC AB 2017250).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.