A simple method for phosphate (Pi) detection is established by developing an off-on fluorescence probe of europium-adjusted carbon dots (CDs), which has been successfully applied to the detection of Pi in very complicated matrixes such as artificial wetlands system.
In this paper, a nanosized porous metal-organic framework, Fe-MIL-88NH₂, was facilely prepared with a uniform octahedral shape by the addition of acetic acid, and for the first time was demonstrated to possess intrinsic peroxidase-like activity. Kinetic analysis and electron spin resonance measurements indicated that the catalytic behavior was consistent with typical Michaelis-Menten kinetics and follows a ping-pong mechanism. As a novel peroxidase mimic material, Fe-MIL-88NH₂ shows the advantages of high catalytic efficiency, ultrahigh stability and high biocompatibility in aqueous medium compared with natural enzymes and other peroxidase nanomimetics. Here, Fe-MIL-88NH₂ was used to quickly catalyze oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂ to produce a colored product, which provided a simple, sensitive and selective method for the colorimetric detection of glucose. Glucose could be linearly detected in the range from 2.0 × 10⁻⁶ to 3.0 × 10⁻⁴ M with a detection limit of 4.8 × 10⁻⁷ M, and the color variation for glucose response was also obvious by visual observation at concentrations as low as 2.0 × 10⁻⁶ M. More importantly, the colorimetric method could be successfully applied to the determination of glucose in diluted serum samples.
A rapid, sensitive, and efficient ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method has been developed to analyze polymethoxylated flavonoids (PMFs) in 14 Citrus peels, including 7 Citrus reticulata (C. reticulata) and 7 Citrus sinensis (C. sinensis). In this study, fast separation can be achieved within 12 min and 42 PMFs have been identified including 33 flavones and 9 flavanones. Most C. reticulata were shown to contain more than 20 PMFs, except Guangxihongpisuanju (GX) containing only 12 PMFs, while most C. sinensis contained fewer than 20 PMFs, except Edangan (EG) containing as many as 32 PMFs. To our knowledge, there are few reports about the quantitation of PMFs using the MS response. Here, a MS quantitative method was established and systematically validated in linearity, precision, and recovery. The linearity was from 1.25 ng/mL to 1.0 μg/mL with the limit of detection (LOD) as low as 75 pg/mL and the limit of quantitation (LOQ) as low as 0.25 ng/mL. Up to 13 PMFs, more types than ever before, were undoubtedly identified and quantitated according to the PMF standards. The results showed that the contents of PMFs in the C. reticulata were generally higher than those in the C. sinensis. This study is systematic for analyzing PMFs and is of great significance because it can provide guidance on utilization of both PMFs and citrus germplasm resources in the future.
Though neurotransmitters are essential elements in neuronal signal transduction, techniques for in vivo analysis are still limited. Here, we describe an organic electrochemical transistor array (OECT-array) technique for monitoring catecholamine neurotransmitters (CA-NTs) in rat brains. The OECT-array is an active sensor with intrinsic amplification capability, allowing real-time and direct readout of transient CA-NT release with a sensitivity of nanomolar range and a temporal resolution of several milliseconds. The device has a working voltage lower than half of that typically used in a prevalent cyclic voltammetry measurement, and operates continuously in vivo for hours without significant signal drift, which is inaccessible for existing methods. With the OECT-array, we demonstrate simultaneous mapping of evoked dopamine release at multiple striatal brain regions in different physiological scenarios, and reveal a complex cross-talk between the mesolimbic and the nigrostriatal pathways, which is heterogeneously affected by the reciprocal innervation between ventral tegmental area and substantia nigra pars compacta.
Using the fingerprint magneto-electroluminescence trace, we observe a fascinating high-level reverse intersystem crossing (HL-RISC) in rubrene-doped organic light-emitting diodes (OLEDs). This HL-RISC is achieved from high-lying triplet states (T2,rub) transferred from host triplet states by the Dexter energy transfer to the lowest singlet states (S1,rub) in rubrene. Although HL-RISC decreases with bias current, it increases with lowering temperature. This is contrary to the temperature-dependent RISC from conventional thermally activated delayed fluorescence, because HL-RISC is an exothermic process instead. Moreover, owing to the competition of exciton energy transfer with direct charge trap, HL-RISC changes nonmonotonically with the dopant concentration and increases luminous efficiency to a maximum at 10% of rubrene, which is about ten times greater than that from the pure-rubrene device. Additionally, the HL-RISC process is not observed in bare rubrene-doped films because of the absence of T2,rub. Our findings pave the way for designing highly efficient orange fluorescent OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.