SummaryBackground Delirium is a postoperative complication that occurs frequently in patients older than 65 years, and presages adverse outcomes. We investigated whether prophylactic low-dose dexmedetomidine, a highly selective α 2 adrenoceptor agonist, could safely decrease the incidence of delirium in elderly patients after non-cardiac surgery.
For elderly patients admitted to intensive care unit after noncardiac surgery, short-term prophylactic administration of low-dose intravenous haloperidol significantly decreased the incidence of postoperative delirium. The therapy was well-tolerated.
Nanoparticles (NPs) have demonstrated great potential for the oral delivery of protein drugs that have very limited oral bioavailability. Orally administered NPs could be absorbed by the epithelial tissue only if they successfully permeate through the mucus that covers the epithelium. However, efficient epithelial absorption and mucus permeation require very different surface properties of a nanocarrier. We herein report self-assembled NPs for efficient oral delivery of insulin by facilitating both of these two processes. The NPs possess a nanocomplex core composed of insulin and cell penetrating peptide (CPP), and a dissociable hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivatives. After systematic screening using mucus-secreting epithelial cells, NPs exhibit excellent permeation in mucus due to the "mucus-inert" pHPMA coating, as well as high epithelial absorption mediated by CPP. The investigation of NP behavior shows that the pHPMA molecules gradually dissociate from the NP surface as it permeates through mucus, and the CPP-rich core is revealed in time for subsequent transepithelial transport through the secretory endoplasmic reticulum/Golgi pathway and endocytic recycling pathway. The NPs exhibit 20-fold higher absorption than free insulin on mucus-secreting epithelium cells, and orally administered NPs generate a prominent hypoglycemic response and an increase of the serum insulin concentration in diabetic rats. Our study provides the evidence of using pHPMA as dissociable "mucus-inert" agent to enhance mucus permeation of NPs, and validates a strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and drug-loaded CPP-rich core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.