Background: The relationship between preprocedural C-reactive protein (CRP) levels and the incidence of contrast-induced acute kidney injury (CI-AKI) is unknown. Methods: Documents of 7,310 consecutive patients undergoing percutaneous coronary intervention (PCI) were screened. Patients with acute myocardial infarction, cardiogenic shock, concomitant inflammatory conditions or undergoing CABG within 48 h were excluded due to potential confounding effects. Results: A total of 4,522 patients were valid for analysis. The median follow-up was 26 months (interquartile range 20–33 months). According to preprocedural CRP values, patients were divided into 3 groups: group 1: CRP <1.0 mg/l (n = 1,523); group 2: 1.0 mg/l ≤ CRP ≤ 3.0 mg/l (n = 1,626); group 3: CRP >3.0 mg/l (n = 1,373). Patients with higher preprocedural CRP levels were associated with a significantly increased rate of CI-AKI (10.6 vs. 14.9 vs. 23.5%, p < 0.0001). After adjustment for baseline covariates, CRP level was still an independent predictor for the incidence of CI-AKI, either as a continuous variable or a categorical variable. Patients with higher CRP values had a significantly higher rate of all-cause mortality and myocardial infarction during follow-up. Conclusion: Elevated preprocedural CRP is associated with an increased risk for CI-AKI in patients undergoing PCI. Preprocedural risk stratification with CRP as an adjunct to established clinical risk factors might be useful.
Predicting bladder cancer progression is important in selecting the optimal treatment for bladder cancer. Because current diagnostic factors regarding progression are lacking, new factors are needed to further stratify the curative potential of bladder cancer. Glycoprotein-130 (GP130), a transmembrane protein, is central to a number of signal transduction pathways involved in tumor aggressiveness, making it an attractive target. We hypothesize that if GP130 is found in an aggressive population of bladder tumors, then blocking GP130 expression may inhibit bladder cancer growth. Herein, we quantitatively show, using 11 patient samples and four bladder cancer cell lines, that GP130 is expressed in the aggressive human bladder tumors and in high-grade bladder cancer cell lines. Moreover, GP130 is significantly correlated with tumor grade, node category, tumor category, and patient outcome. We demonstrated a tumor-specific GP130 effect by blocking GP130 expression in bladder tumor cells, which resulted in decreased cell viability and reduced cell migration. Furthermore, we reduced tumor volume by approximately 70% compared with controls by downregulating GP130 expression using chitosan-functionalized nanoparticles encapsulating GP130 siRNA in an in vivo bladder cancer xenograft mouse model. Our results indicate that GP130 expression is linked to the aggressiveness of bladder tumors, and blocking GP130 has therapeutic potential in controlling tumor growth.
BackgroundProstate tumor overexpressed 1 (PTOV1) has been reported to contribute to increased cancer proliferation. However, the clinical significance of PTOV1 in the development and progression of nasopharyngeal carcinoma (NPC) is unclear. Our study aimed to investigate the expression pattern of PTOV1 in NPC and its correlation with clinicopathological features of patients.MethodsWestern blotting and real-time PCR were conducted to examine PTOV1 expression levels in NPC cell lines and biopsy tissues compared with normal controls. Immunohistochemistry (IHC) was performed to analyze PTOV1 protein expression in paraffin-embedded tissues from 123 patients. Statistical analyses were applied to evaluate the clinical significance of PTOV1 expression.ResultsPTOV1 mRNA and protein levels were upregulated in NPC cell lines and clinical samples. IHC analyses showed that PTOV1 was highly expressed in 68 (55.3%) of 123 NPC specimens. Statistical analysis revealed that PTOV1 expression was significantly correlated with clinical stage (P < 0.001), T classification (P = 0.042) and N classification (P = 0.001). Patients with a higher PTOV1 expression had shorter overall survival compared with those with a lower PTOV1 expression level, especially in lower N stage patients. Multivariate analyses suggested that PTOV1 expression was an independent prognostic marker for survival in NPC patients.ConclusionsOur data demonstrated that PTOV1 overexpression is associated with poor survival outcomes of NPC patients, especially in N0-1 patients. Hence, PTOV1 may help to detect early lymph node metastasis of NPC patients and serve as an independent prognostic biomarker for human NPC.
The original version of this Article contained an error in the spelling of the author Zemin Zhang, which was incorrectly given as Zeming Zhang. This has now been corrected in both the PDF and HTML versions of the Article.
Inflammatory gene polymorphisms may be associated with glioma risk. The purpose of this study was to analyze effects of certain inflammatory gene and some clinical factors on patient survival.The clinical information of 269 glioma patients conceived operation from September 2010 to May 2014 to decide the 1-, 3-year survival rates according to follow-up results and analyze age, gender, the WHO classification, extent of surgical resection, radiotherapy and chemotherapy factors effects on prognosis. Survival distributions were estimated by using the Kaplan–Meier method and difference in the survival was tested using the log-rank test. To estimate the association between the IL4, IL13, IL10, IL4R SNPs, and PFS and OS in glioma, the HR and 95% CI were calculated by univariate Cox proportional hazards model. Multivariate Cox model were performed to compute adjusted HR and 95% CI. All data was analyzed with SPSS17.0 package. Extent of surgical resection, chemotherapy, and age are an important factor in glioma overall survival and progression-free survival overall. Extent of surgery and chemotherapy are important factors in astrocytoma overall survival. Univariate analysis showed that IL4R rs1801275 was significantly associated with overall survival of glioma and astrocytoma patients (P < 0.05). Multivariate Cox regression analysis showed that IL4R rs1801275 GG genotype could increase the death risk of glioma and astrocytoma patients (Glioma: hazard ratio [HR]: 4.897, 95% confidence limits [95% CI]: 1.962–12.222, P = 0.001; Astrocytoma: HR: 15.944, 95% CI: 4.019–63.253, P < 0.05).Our research results showed that extent of surgical resection, age, and chemotherapy affect the prognosis of glioma. The IL4R gene may affect the survival of glioma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.