It remains unclear whether the phloem unloading pathway alters to adapt to developmental transition in fleshy fruits that accumulate high level of soluble sugars. Using a combination of electron microscopy, transport of the phloem-mobile symplasmic tracer carboxyfluorescein, movement of the companion cell-expressed and the green fluorescent protein-tagged viral movement protein, and assays of the sucrose cleavage enzymes, the pathway of phloem unloading was studied in the berries of a hybrid grape (Vitis vinifera 3 Vitis labrusca). Structural investigations showed that the sieve element-companion cell complex is apparently symplasmically connected through plasmodesmata with surrounding parenchyma cells throughout fruit development, though a small portion of plasmodesmata are apparently blocked in the ripening stage. Both carboxyfluorescein and the green fluorescent protein-tagged viral movement protein were released from the functional phloem strands during the early and middle stages of fruit development, whereas the two symplasmic tracers were confined to the phloem strands during the late stage. This reveals a shift of phloem unloading from symplasmic to apoplasmic pathway during fruit development. The turning point of the phloem unloading pathways was further shown to be at or just before onset of ripening, an important developmental checkpoint of grape berry. In addition, the levels of both the expression and activities of cell wall acid invertase increased around the onset of ripening and reached a high level in the late stage, providing further evidence for an operation of the apoplasmic unloading pathway after onset of ripening. These data demonstrate clearly the occurrence of an adaptive shift of phloem unloading pathway to developmental transition from growing phase to ripening in grape berry.
Using qualitative information from in-depth interviews of 40 female entertainment workers (FEWs) in Shanghai, this article explores factors associated with unprotected sex and barriers to consistent condom use among FEWs. Results suggest that not all FEWs were at high risk, nor did they all engage in unprotected sex for the same reasons. Prevalence of unprotected sex varied by individual characteristics, across different settings where commercial sex took place, and by the FEWs' relationship to pimps or establishment owners. Factors contributing to unprotected sex included lack of HIV transmission knowledge, economic hardship, client refusal/coercion, and control by pimps/establishment owners. Incorrect beliefs also contributed to use of methods that offered no protection. Study participants endorsed the need for HIV/sexually transmitted disease prevention, but were suspicious about government programs. Prevention interventions need to target simultaneously clients of commercial sex and pimps/business owners and to promote a social environment supportive of 100% condom use in commercial sex.
: Of all the eukaryotic algal groups, diatoms make the most substantial contributions to photosynthesis in the contemporary ocean. Understanding the biological innovations that have occurred in the diatom chloroplast may provide us with explanations to the ecological success of this lineage and clues as to how best to exploit the biology of these organisms for biotechnology. In this paper, we use multi-species transcriptome datasets to compare chloroplast metabolism pathways in diatoms to other algal lineages. We identify possible diatom-specific innovations in chloroplast metabolism, including the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete chloroplast ornithine cycle, and chloroplast-targeted proteins involved in iron acquisition and CO2 concentration not shared between diatoms and their closest relatives in the stramenopiles. We additionally present a detailed investigation of the chloroplast metabolism of the oil-producing diatom Fistulifera solaris, which is of industrial interest for biofuel production. These include modified amino acid and pyruvate hub metabolism that might enhance acetyl-coA production for chloroplast lipid biosynthesis and the presence of a chloroplast-localised squalene synthesis pathway unknown in other diatoms. Our data provides valuable insights into the biological adaptations underpinning an ecologically critical lineage, and how chloroplast metabolism can change even at a species level in extant algae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.