Developing an understanding of structure-activity relationships and reaction mechanisms of catalytic processes is critical to the successful design of highly efficient catalysts. As a This is a previous version of the article published in
Electrocatalytic reduction of CO2 to fuels and chemicals is one of the most attractive routes for CO2 utilization. Current catalysts suffer from low faradaic efficiency of a CO2-reduction product at high current density (or reaction rate). Here, we report that a sulfur-doped indium catalyst exhibits high faradaic efficiency of formate (>85%) in a broad range of current density (25–100 mA cm−2) for electrocatalytic CO2 reduction in aqueous media. The formation rate of formate reaches 1449 μmol h−1 cm−2 with 93% faradaic efficiency, the highest value reported to date. Our studies suggest that sulfur accelerates CO2 reduction by a unique mechanism. Sulfur enhances the activation of water, forming hydrogen species that can readily react with CO2 to produce formate. The promoting effect of chalcogen modifiers can be extended to other metal catalysts. This work offers a simple and useful strategy for designing both active and selective electrocatalysts for CO2 reduction.
Facile interconversion between CO and formate/formic acid (FA) is of broad interest in energy storage and conversion and neutral carbon emission. Historically, electrochemical CO reduction reaction to formate on Pd surfaces was limited to a narrow potential range positive of -0.25 V (vs RHE). Herein, a boron-doped Pd catalyst (Pd-B/C), with a high CO tolerance to facilitate dehydrogenation of FA/formate to CO, is initially explored for electrochemical CO reduction over the potential range of -0.2 V to -1.0 V (vs RHE), with reference to Pd/C. The experimental results demonstrate that the faradaic efficiency for formate (η) reaches ca. 70% over 2 h of electrolysis in CO-saturated 0.1 M KHCO at -0.5 V (vs RHE) on Pd-B/C, that is ca. 12 times as high as that on homemade or commercial Pd/C, leading to a formate concentration of ca. 234 mM mg Pd, or ca. 18 times as high as that on Pd/C, without optimization of the catalyst layer and the electrolyte. Furthermore, the competitive selectivity ηη on Pd-B/C is always significantly higher than that on Pd/C despite a decreases of η and an increases of the CO faradaic efficiency (η) at potentials negative of -0.5 V. The density functional theory (DFT) calculations on energetic aspects of CO reduction reaction on modeled Pd(111) surfaces with and without H-adsorbate reveal that the B-doping in the Pd subsurface favors the formation of the adsorbed HCOO*, an intermediate for the FA pathway, more than that of *COOH, an intermediate for the CO pathway. The present study confers Pd-B/C a unique dual functional catalyst for the HCOOH ↔ CO interconversion.
Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites. Direct spectroscopic evidence demonstrates that the atomic hydrogen species generated on the Pt nanocatalysts can spill over from Pt to Au via the Pt-Au and Pt-TiO-Au interfaces, but would be blocked at the Pt-SiO-Au interfaces, leading to the different reaction pathways and product selectivity on Pt-on-Au and Pt-on-SHINs nanocomposites. Such findings have also been verified by the density functional theory calculation. In addition, it is found that nanocatalysts assembled on pinhole-free shell-isolated nanoparticles (Pt-on-pinhole-free-SHINs) can override the influence of the Au core on the reaction and can be applied as promising platforms for the in situ study of heterogeneous catalysis. This work offers a concrete example of how SERS/SHINERS elucidate details about in situ reaction and helps to dig out the fundamental role of interfaces in catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.