Both eutrophication and salinization are growing global environmental problems in freshwater ecosystems, threatening the water quality and various aquatic organisms. However, little is known about their interactive effects on theses stressors and the role of lake depth on these interactions. We used field surveys to compared zooplankton assemblages over four seasons in eight Yunnan Plateau lakes with different trophic states, salinization levels, and water depths. The results showed that: 1) the species number (S), density (DZoop), and biomass (BZoop) of zooplankton exhibited strong seasonal dynamics, being overall higher in the warm seasons. 2) Data collected over four seasons and summer data both revealed highly significant positive relationships of S, DZoop, and BZoop with total nitrogen (TN), total phosphorus (TP), and phytoplankton chlorophyll a (Chl a). 3) S, DZoop, and BZoop displayed a unimodal relationship with salinity, peaking at 400–1000 μS/cm (conductivity, to reflect salinity). 4) The two large-sized taxa (cladocerans and copepods) generally increased at low-moderate levels of TN, TP, Chl a, and Cond and was constant or decreased at high levels. The average body mass (biomass/density) of crustaceans decreased with increasing TN, TP, Chl a, and conductivity. Our findings indicate that zooplankton may be more vulnerable in deep lakes than in shallow lakes when exposed to conductivity stress even under mesotrophic conditions, and the overall decrease in size in zooplankton assemblages under the combined stress of eutrophication and salinization may result in a lowered grazing effect on phytoplankton.
Eutrophication and salinization are serious global environmental problems in freshwater ecosystems, occasionally acting jointly to exert harmful effects on aquatic ecosystems. To elucidate the interactive effects of nutrients and salinity on phytoplankton assemblages, we conducted a four-season study during 2020–2021 of eight lakes from Yunnan Plateau (Southwest China) with a wide range of conductivities (Cond, reflecting degree of salinization), eutrophic states, and water depths and used General Additive Modeling (GAM) of the data. We found that: (1) species number (SN), density (DPhyt), and biomass (BPhyt) of phytoplankton showed stronger seasonal dynamics in shallow lakes than in deep lakes, all being, as expected, higher in the warm season; (2) annual and summer data revealed highly significant positive relationships between SN, DPhyt, and BPhyt with total nitrogen (TN) and total phosphorus (TP), which became weaker at high TP occurring when the N:P ratio was low, indicating N limitation; (3) SN, DPhyt, and BPhyt showed a unimodal relationship with salinity, peaking at 400–1000 μS/cm (Cond); (4) the two dominant taxa (cyanobacteria and chlorophyta) showed different patterns, with chlorophyta generally dominating at low TN and cyanobacteria at high TN and Cond, suggesting the synergistic effect of nitrogen and Cond on cyanobacterial dominance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.