In order to improve the accuracy of signal recovery after transmitting over atmospheric turbulence channel, a deep-learning-based signal detection method is proposed for a faster-than-Nyquist (FTN) hybrid modulated optical wireless communication (OWC) system. It takes advantage of the long short-term memory (LSTM) network in the recurrent neural network (RNN) to alleviate the interdependence problem of adjacent symbols. Moreover, an LSTM attention decoder is constructed by employing the attention mechanism, which can alleviate the shortcomings in conventional LSTM. The simulation results show that the bit error rate (BER) performance of the proposed LSTM attention neural network is 1 dB better than that of the back propagation (BP) neural network and outperforms by 2.5 dB when compared with the maximum likelihood sequence estimation (MLSE) detection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.