Images of outdoor scenes are usually degraded under bad weather conditions, which results in a hazy image. To date, most haze removal methods based on a single image have ignored the effects of sensor blur and noise. Therefore, in this paper, a three-stage algorithm for haze removal, considering sensor blur and noise, is proposed. In the first stage, we preprocess the degraded image and eliminate the blur/noise interference to estimate the hazy image. In the second stage, we estimate the transmission and atmospheric light by the dark channel prior method. In the third stage, a regularized method is proposed to recover the underlying image. Experimental results with both simulated and real data demonstrate that the proposed algorithm is effective, based on both the visual effect and quantitative assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.