The effects of sleep on the ventilatory responses to hypercapnia have been well described in animals and in humans. In contrast, there is little information for genioglossus (GG) responses to a range of CO(2) stimuli across all sleep-wake states. Given the notion that sleep, especially rapid eye movement (REM) sleep, may cause greater suppression of muscles with both respiratory and nonrespiratory functions, this study tests the hypothesis that GG activity will be differentially affected by sleep-wake states with major suppression in REM sleep despite excitation by CO(2). Seven rats were chronically implanted with electroencephalogram, neck, GG, and diaphragm electrodes, and responses to 0, 1, 3, 5, 7, and 9% CO(2) were recorded. Diaphragm activity and respiratory rate increased with CO(2) (P < 0.001) across sleep-wake states with significant increases at 3-5% CO(2) compared with 0% CO(2) controls (P < 0.05). Phasic GG activity also increased in hypercapnia but required higher CO(2) (7-9%) for significant activation (P < 0.05). Further studies in 15 urethane-anesthetized rats with the vagi intact (n = 6) and cut (n = 9) showed that intact vagi delayed GG recruitment with hypercapnia but did not affect diaphragm responses. In the naturally sleeping rats, we also showed that GG activity was significantly reduced in non-REM and REM sleep (P < 0.04) and was almost abolished in REM even with stimulation by 9% CO(2) (decrease = 80.4% vs. wakefulness). Such major suppression of GG activity in REM, even with significant respiratory stimulation, may explain why obstructive apneas are more common in REM sleep.
A novel acidic fluorescent probe 1 has been designed, synthesized, characterized and evaluated in vivo as optical imaging of intracellular H(+). The design strategy for the probe is based on the change in structure between spirocyclic (non-fluorescent) and ring-open (fluorescent) forms of rhodamine dyes. The probe exhibits high sensitivity, good photostability, excellent cell membrane permeability and strong pH dependence. The pH titration indicates that the fluorescence intensity increases more than 100-fold within the pH range of 4.2-6.0 with the pK(a) value of 4.85, which is valuable for studying acidic organelles in living cells. The fluorescent imaging of HepG2 cells also demonstrates that the designed probe has great value in monitoring intracellular H(+) within living cells.
3',6'-Bis(diphenylphosphinyl)fluorescein (PF-1) was synthesized as a highly selective and sensitive fluorescent probe for imaging O(2) (.-) in living cells. The design strategy for the probe was based on the nucleophilic mechanism of O(2) (.-) to mediate deprotection of this probe to give fluorescein. Upon reaction with O(2) (.-), the probe exhibits a strong fluorescence response and high selectivity for O(2) (.-) over other reactive oxygen species and some biological compounds. The phosphinate-based probe, as a new fluorescent reagent, is cell-permeable and can detect micromolar changes of O(2) (.-) concentrations by using confocal microscopy in living cells. The unique combination of good selectivity, high sensitivity, good water solubility, and rapid reactivity establishes the potential value of the probe for facilitating investigations of the generation, metabolism, and mechanisms of superoxide-mediated cellular homeostasis and injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.