Odorant receptors (ORs) are essential for plant-insect interactions. However, despite the global impacts of Lepidoptera (moths and butterflies) as major herbivores and pollinators, little functional data is available about Lepidoptera ORs involved in plant volatile detection. Here, we initially characterized the plant-volatile-sensing function(s) of 44 ORs from the cotton bollworm Helicoverpa armigera, and subsequently conducted a large-scale comparative analysis that establishes how most orthologous ORs have functionally diverged among closely related species whereas some rare ORs are functionally conserved. Specifically, our systematic analysis of H. armigera ORs catalogued the wide functional scope of the H. armigera OR repertoire, and also showed that HarmOR42 and its Spodoptera littoralis orthologue are functionally conserved. Pursuing this, we characterized the HarmOR42-orthologous ORs from 11 species across the Glossata suborder and confirmed the HarmOR42 orthologues form a unique OR lineage that has undergone strong purifying selection in Glossata species and whose members are tuned with strong specificity to phenylacetaldehyde, a floral scent component common to most angiosperms. In vivo studies via HarmOR42 knockout support that HarmOR42-related ORs are essential for host-detection by sensing phenylacetaldehyde. Our work also supports that these ORs co-evolved with the tube-like proboscis, and has maintained functional stability throughout the long-term coexistence of Lepidoptera with angiosperms. Thus, beyond providing a rich empirical resource for delineating the precise functions of H. armigera ORs, our results enable a comparative analysis of insect ORs that have apparently facilitated and currently sustain the intimate adaptations and ecological interactions among nectar feeding insects and flowering plants.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.
Ionotropic receptors (IRs) were first found in Drosophila melanogaster, and derive from ionotropic glutamate receptors (iGluRs), which are implicated in detecting acids, ammonia, amine, temperature and humidity. Although IRs are involved in sensing acid odors in a few insects, such as D. melanogaster, Aedes aegypti, and Manduca sexta, the function of IRs in Helicoverpa armigera is still unknown. IR8a was confirmed to be a co‐receptor associated with acid detection. From the results of phylogenetic analysis, HarmIR8a displayed high similarity compared to homologs in D. melanogaster, M. sexta, and A. aegypti, suggesting that HarmIR8a might have a consistent function as a co‐receptor for acid detection. In this study, clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR‐associated protein 9 (Cas9)‐mediated genome editing was implemented to knockout HarmIR8a for in vivo functional analysis. Electrophysiological and behavioral assays were performed to compare the differences between HarmIR8a knockout mutants and wild type individuals. From electroantennogram (EAG) analysis, we found that wild type H. armigera adults could detect short‐chain carboxylic acids. In addition, wind tunnel experiments showed that 1% acetic acid attracted wild type H. armigera adults. However, acid sensing and attraction were reduced or abolished in the HarmIR8a knockout mutants. Our data suggest that HarmIR8a is important for H. armigera to detect short‐chain carboxylic acids and mediate attraction behavior to acetic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.