Aiming at anti Unmanned Aerial Vehicle (UAV) swarm, this paper studies the detection and suppression mechanisms of emergence in cooperative flight. Cooperative fly is one of the critical operations for UAV swarm in both military and civilian utilities, which allows individual UAVs to distributed adjust their velocity to head for a common destination as well as avoid a collision. This process is viewed as the emergence of complex systems. An emergence detection algorithm based on double thresholds is proposed. It simultaneously monitors the cooperative flight process and system connectivity to accurately identify the occurrence, achievement, or failure of cooperative fly, which provides a solid prerequisite for the suppression mechanism. For suppression, in-band radio interference is designed under the constraint of average power, and the effect is modeled from the perspective of degrading the communication performance of the target system. It is found that low-intensity continuous interference can effectively delay the cooperative fly process and has better concealment, while medium-intensity continuous interference can rapidly stop that process. Based on the above analysis, for the first time, two countermeasures for the UAV swarm’s cooperative fly are designed for the operation intent of delay and disruption of the target UAC swarms, respectively. Simulation results show the effectiveness of the countermeasures.
Dragonfly algorithm (DA) is a recently proposed optimization algorithm based on swarm intelligence, which has been successfully applied in function optimization, feature selection, parameter adjustment, etc. However, it fails to take individual optimal position into consideration but only relies on population optimal position and 5 behaviours to update individual position, leading to low accuracy, slow convergence, and local optima. To overcome these drawbacks, Tent Chaotic Map and Population Classification Evolution Strategy-Based Dragonfly Algorithm (TPDA) is proposed. Tent chaotic map is used to initialize the population, making individuals distributed more uniformly in search space to improve population diversity and search efficiency. Population is classified according to individual fitness value, and different position update methods are adopted for different types of individuals to guide the search process and improve the ability of TPDA to jump out of local optima, thus realizing a balance between exploration and exploitation. The efficiency of TPDA has been validated by tests on 18 basic unconstrained benchmark functions. A comparative performance analysis between TPDA, Particle Swarm Optimization (PSO), DA, and Adaptive Learning Factor and Differential Evolution-Based Dragonfly Algorithm (ADDA) has been carried out. Experimental and statistical results demonstrate that TPDA gives significantly better performances compared with PSO, DA, and ADDA on the average and standard deviation in all 18 functions. The global optimization capability of TPDA on high-dimensional functions and the comparison of the time complexity of TPDA and other swarm intelligence algorithms is also verified in the paper. The results indicate that TPDA is able to perform better on optimizing functions without consuming more computational time.
The unmanned aerial vehicle (UAV) has drawn attention from the military and researchers worldwide, which has advantages such as robust survivability and execution ability. Mobility models are usually used to describe the movement of nodes in drone networks. Different mobility models have been proposed for different application scenarios; currently, there is no unified mobility model that can be adapted to all scenarios. The mobility of nodes is an essential characteristic of mobile ad hoc networks (MANETs), and the motion state of nodes significantly impacts the network’s performance. Currently, most related studies focus on the establishment of mathematical models that describe the motion and connectivity characteristics of the mobility models with limited universality. In this study, we use a backpropagation neural network (BPNN) to explore the relationship between the motion characteristics of mobile nodes and the performance of routing protocols. The neural network is trained by extracting five indicators that describe the relationship between nodes and the global features of nodes. Our model shows good performance and accuracy of classification on new datasets with different motion features, verifying the correctness of the proposed idea, which can help the selection of mobility models and routing protocols in different application scenarios having the ability to avoid repeated experiments to obtain relevant network performance. This will help in the selection of mobility models for drone networks and the setting and optimization of routing protocols in future practical application scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.