Summary Interleukin-10 (IL-10) has long been recognized to have potent and broad-spectrum anti-inflammatory activity, which has been unequivocally established in various models of infection, inflammation, and even in cancer. However, because of the marginal successes of the initial clinical trials using recombinant IL-10, some of the interest in this cytokine as an anti-inflammatory therapeutic has diminished. New work showing IL-10 production from regulatory T cells and even T-helper 1 T cells has reinvigorated the field and revealed the power of this cytokine to influence immune responses. Furthermore, new preclinical studies suggest that combination therapies, using antibodies to IL-10 along with chemotherapy, can be effective in treating bacterial, viral, or neoplastic diseases. Studies to understand IL-10 gene expression in the various cell types may lead to new therapeutics to enhance or inhibit IL-10 production. In this review, we summarize what is known about the regulation of IL-10 gene expression by various immune cells. We speculate on the promise that this cytokine holds to influence immune responses and mitigate immune pathologies.
Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.
Alzheimer's disease (AD) is the most common cause of disability in individuals aged >65 years worldwide. AD is characterized by the abnormal deposition of amyloid β (Aβ) peptide, and intracellular accumulation of neurofibrillary tangles of hyperphosphorylated τ protein and dementia. The neurotoxic oligomer Aβ peptide, which is the neuropathological diagnostic criterion of the disease, together with τ protein, are mediators of the neurodegeneration that is among the main causative factors. However, these phenomena are mainly initiated and enhanced by oxidative stress, a process referring to an imbalance between antioxidants and oxidants in favour of oxidants. This imbalance can occur as a result of increased free radicals or a decrease in antioxidant defense, free radicals being a species that contains one or more unpaired electrons in its outer shell. The major source of potent free radicals is the reduction of molecular oxygen in water, that initially yields the superoxide radical, which produces hydrogen peroxide by the addition of an electron. The reduction of hydrogen peroxide produces highly reactive hydroxyl radicals, termed reactive oxygen species (ROS) that can react with lipids, proteins, nucleic acids, and other molecules and may also alter their structures and functions. Thus, tissues and organs, particularly the brain, a vulnerable organ, are affected by ROS due to its composition. The brain is largely composed of easily oxidizable lipids while featuring a high oxygen consumption rate. The current review examined the role of oxidative stress in AD.
Systemic lupus erythematosus (SLE) is a potentially life-threatening autoimmune disease characterized by altered balance of activity between effector and regulatory CD4(+) T cells. The homeostasis of CD4(+) T cell subsets is regulated by interleukin (IL)-2, and reduced production of IL-2 by T cells is observed in individuals with SLE. Here we report that treatment with low-dose recombinant human IL-2 selectively modulated the abundance of regulatory T (Treg) cells, follicular helper T (TFH) cells and IL-17-producing helper T (TH17) cells, but not TH1 or TH2 cells, accompanied by marked reductions of disease activity in patients with SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.