This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency.
Common CT imaging signs of lung diseases (CISLs) are defined as the imaging signs that frequently appear in lung CT images from patients and play important roles in the diagnosis of lung diseases. This paper proposes a new feature selection method based on FIsher criterion and genetic optimization, called FIG for short, to tackle the CISL recognition problem. In our FIG feature selection method, the Fisher criterion is applied to evaluate feature subsets, based on which a genetic optimization algorithm is developed to find out an optimal feature subset from the candidate features. We use the FIG method to select the features for the CISL recognition from various types of features, including bag-of-visual-words based on the histogram of oriented gradients, the wavelet transform-based features, the local binary pattern, and the CT value histogram. Then, the selected features cooperate with each of five commonly used classifiers including support vector machine (SVM), Bagging (Bag), Naïve Bayes (NB), k -nearest neighbor (k-NN), and AdaBoost (Ada) to classify the regions of interests (ROIs) in lung CT images into the CISL categories. In order to evaluate the proposed feature selection method and CISL recognition approach, we conducted the fivefold cross-validation experiments on a set of 511 ROIs captured from real lung CT images. For all the considered classifiers, our FIG method brought the better recognition performance than not only the full set of original features but also any single type of features. We further compared our FIG method with the feature selection method based on classification accuracy rate and genetic optimization (ARG). The advantages on computation effectiveness and efficiency of FIG over ARG are shown through experiments.
Lung computed tomography (CT) imaging signs play important roles in the diagnosis of lung diseases. In this paper, we review the significance of CT imaging signs in disease diagnosis and determine the inclusion criterion of CT scans and CT imaging signs of our database. We develop the software of abnormal regions annotation and design the storage scheme of CT images and annotation data. Then, we present a publicly available database of lung CT imaging signs, called LISS for short, which contains 271 CT scans and 677 abnormal regions in them. The 677 abnormal regions are divided into nine categories of common CT imaging signs of lung disease (CISLs). The ground truth of these CISLs regions and the corresponding categories are provided. Furthermore, to make the database publicly available, all private data in CT scans are eliminated or replaced with provisioned values. The main characteristic of our LISS database is that it is developed from a new perspective of CT imaging signs of lung diseases instead of commonly considered lung nodules. Thus, it is promising to apply to computer-aided detection and diagnosis research and medical education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.