Developing highly efficient non-Pt hydrogen oxidation (HOR) catalysts used in alkaline solution is very important for anion exchange membrane hydrogen-oxygen fuel cells. Herein, Ir/Ni-NiO/CNT composite catalysts were designed and prepared,...
Development of effective electrocatalysts toward hydrogen oxidation with a low content of noble metals has attracted the attention of the catalytic community. In this work, a novel catalyst composed of nitrogen-doped carbon acting as the substrate and Ir nanoclusters as active species was prepared, which was then employed as an effective catalyst for the hydrogen oxidation reaction (HOR) in an alkaline electrolyte. In 0.1 M KOH, the optimized catalyst provides an exchange current density of 0.144 mA cm Ir −2 for HOR that outperforms the catalytic activity of the commercial Pt/C catalyst with a Pt content of 20 wt %. The substrate induces highly active Ir sites that markedly boosted the electrocatalytic activity for HOR. The nitrogen-doped carbon substrate increases the stability of Ir nanoclusters and decreases the absorption energy of hydrogen on Ir sites; at the same time, the higher electrostatic potential around the adsorbed hydrogen on Ir/N-doped carbon also enables them to be easily attracted by OH − species, both of which enhanced the catalytic activity. The excellent catalytic activity and the understanding shown here will give some hints for the development of HOR catalysts used in alkaline electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.