Abstract:Precipitation is an important controlling parameter for land surface processes, and is crucial to ecological, environmental, and hydrological modeling. In this study, we propose a spatial downscaling approach based on precipitation-land surface characteristics. Land surface temperature features were introduced as new variables in addition to the Normalized Difference Vegetation Index (NDVI) and Digital Elevation Model (DEM) to improve the spatial downscaling algorithm. Two machine learning algorithms, Random Forests (RF) and support vector machine (SVM), were implemented to downscale the yearly Tropical Rainfall Measuring Mission 3B43 V7 (TRMM 3B43 V7) precipitation data from 25 km to 1 km over the Tibetan Plateau area, and the downscaled results were validated on the basis of observations from meteorological stations and comparisons with previous downscaling algorithms. According to the validation results, the RF and SVM-based models produced higher accuracy than the exponential regression (ER) model and multiple linear regression (MLR) model. The downscaled results also had higher accuracy than the original TRMM 3B43 V7 dataset. Moreover, models including land surface temperature variables (LSTs) performed better than those without LSTs, indicating the significance of considering precipitation-land surface temperature when downscaling TRMM 3B43 V7 precipitation data. The RF model with only NDVI and DEM produced much worse accuracy than the SVM model with the same variables. This indicates that the Random Forests algorithm is more sensitive to LSTs than the SVM when downscaling yearly TRMM 3B43 V7 precipitation data over Tibetan Plateau. Moreover, the precipitation-LSTs relationship is more instantaneous, making it more likely to downscale precipitation at a monthly or weekly temporal scale.
Environmental monitoring of Earth from space has provided invaluable information for understanding land-atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation-land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day-night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI), the Digital Elevation Model (DEM), and geolocation (longitude, latitude). Four machine learning regression algorithms, the classification and regression tree (CART), the k-nearest neighbors (k-NN), the support vector machine (SVM), and random forests (RF), were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST) feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation-land surface temperature relationship when downscaling TRMM 3B43 V7 precipitation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.