In recent years, as a result of increasingly intensive rainfall events, the associated water erosion and corrosion have led to the increase in breach risk of aging dams in the United States. In this study, a hydrodynamic model was used to the inundation simulation under three hypothetical extreme precipitation-induced homogeneous concrete dam-breach scenarios. All hydraulic variables, including water depth, flow velocity, and flood arriving time over separated nine cross-sections in the Catawba River, were calculated. The hypothetical simulation results illustrate that the impact of Hurricane Florence’s rainfall is far more severe over the downstream of hydraulic facilities than that of the Once-in-a-century storm rainfall event. Although Hurricane Florence’s rainfall observed in Wilmington had not historically happened near the MI Dam site, the river basin has a higher probability to be attacked by such storm rainfall if more extreme weather events would be generated under future warming conditions. Besides, the time for floodwaters to reach cross-section 6 under the Hurricane Gustav scenario is shorter than that under the Once-in-a-century rainfall scenario, making the downstream be inundated in short minutes. Since the probability can be quantitatively evaluated, it is of great worth assessing the risk of dam-break floods in coastal cities where human lives are at a vulnerable stage.
In this study, an integrated simulation, inference and optimization approach with two-stage health risk assessment (i.e., ISIO-THRA) is developed for supporting groundwater remediation for a petroleum-contaminated site in western Canada. Both environmental standards and health risk are considered as the constraints in the ISIO-THRA model. The health risk includes two parts: (1) the health risk during the remediation process and (2) the health risk in the natural attenuation period after remediation. In the ISIO-THRA framework, the relationship between contaminant concentrations and time is expressed through first-order decay models. The results demonstrate that: (1) stricter environmental standards and health risk would require larger pumping rates for the same remediation duration; (2) higher health risk may happen in the period of the remediation process; (3) for the same environmental standard and acceptable health-risk level, the remediation techniques that take the shortest time would be chosen. ISIO-THRA can help to systematically analyze interaction among contaminant transport, remediation duration, and environmental and health concerns, and further provide useful supportive information for decision makers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.