In recent years, researchers have found that adiponectin (ANP) plays an important role in the pathogenesis of Alzheimer's disease (AD), and low serum concentrations of ANP are associated with AD. Higher plasma ANP level have a protective effect against the development of cognitive decline, suggesting that ANP may affect AD onset. Meanwhile, accumulating evidence supports the crucial role of ANP in the pathogenesis of AD. To study the relationship between ANP gene polymorphisms (rs266729, -11377C>G and rs1501299, G276T) and late-onset AD (LOAD), we carried out a case-control study that included 201 LOAD patients and 257 healthy control subjects. Statistically significant differences were detected in the genotype and allelotype frequency distributions of rs266729 and rs1501299 between the LOAD group and the control group, with a noticeable increase in the G and T allelotype frequency distributions in the LOAD group (P < 0.05). Logistic regression analysis using recessive model and additive model revealed that the rs266729 GG and rs1501299 TT genotypes are associated with a greater risk of LOAD. Haplotype analysis identified four haplotypes: CG, CT, GG, and GT. The frequencies of the CT and GG haplotypes were not significantly different (P > 0.05) between the LOAD group and control group, whereas the CG and GT haplotypes were significantly different (P < 0.05), suggesting a negative correlation between the CG haplotype and LOAD onset (OR = 0.74, 95% CI = 0.57–0.96, P = 0.022), and a positive correlation between the GT haplotype and LOAD onset (OR = 2.29, 95% CI = 1.42–3.68, P = 0.005). Therefore, we speculated that the rs266729 and rs1501299 of ANP gene polymorphisms and the GT and CG haplotypes were associated with LOAD.
It has been recognized that miR-181a expression is dysregulated and intimately associated with clinical prognosis in a variety of human cancers. However, the direct role of miR-181a in tumor progression has been elusive. Moreover, mounting evidence has demonstrated that cellular apoptosis, a physiological process of programmed cell death, is disrupted in various categories of human malignancies. Multiple apoptosisrelated genes have been proven to act as the target genes of miR-181a. In this study, we hypothesize that miR-181a probably plays a potential role in modulating the procession and apoptosis of cancer cells. We performed a literature review and elucidated how miR-181a modulated cellular apoptosis, especially the malignant neoplasm cells. We also unraveled the potential role of miR-181a in the diagnosis, treatment and clinical prognosis of multiple human malignancies - miR-181a plays a pivotal role in the development, treatment and prognosis of patients suffering from malignant tumors. It also participates in the development of cancer partially by modulating cellular apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.