Many researchers use one-dimensional (1-D) and three-dimensional (3-D) coupled hydrodynamic and water-quality models to simulate water quality dynamics, but direct comparison of their relative performance is rare. Such comparisons may quantify their relative advantages, which can inform best practices. In this study, we compare two 1-year simulations in a shallow, eutrophic, managed reservoir using a community-developed 1-D model and a 3-D model coupled with the same water-quality model library based on multiple evaluation criteria. In addition, a verified bubble plume model is coupled with the 1-D and 3-D models to simulate the water temperature in four epilimnion mixing periods to further quantify the relative performance of the 1-D and 3-D models. Based on the present investigation, adopting a 1-D water-quality model to calibrate a 3-D model is time-efficient and can produce reasonable results; 3-D models are recommended for simulating thermal stratification and management interventions, whereas 1-D models may be more appropriate for simpler model setups, especially if field data needed for 3-D modeling are lacking.
To understand water quality degradation during hypoxia, we need to understand sediment oxygen fluxes, the main oxygen sink in shallow hypolimnia. Kinetic models which integrate diffusion and consumption of dissolved oxygen (DO) in sediments usually assume a downward flux of DO from the sediment-water interface (SWI) with a zero-flux condition at the lower boundary of the oxic sediment layer. In this paper, we separately account for the oxidation of an upward flux of reduced compounds by introducing a negative flux of DO as a lower boundary condition. Using in situ measurements in two lakes, kinetic models were fit to DO microprofiles using zero-order and firstorder kinetics with both zero and non-zero lower boundary conditions. Based on visual inspection and goodness-of-fit criteria, the negative-flux lower boundary condition,-0.25g O 2 m-2 d-1 , was found to more accurately describe DO consumption kinetics. Fitted zero-order rate constants ranged from 50-510 mg L-1 d-1 and first-order rate constants ranged from 60-400 d-1 , which agree well with prior laboratory studies. DO fluxes at the SWI calculated from the simulated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.