Topological phononic states, facilitating acoustic unique transports immunizing to defects and disorders, have significantly revolutionized our scientific cognition of acoustic wave systems. Up to now, the theoretical and experimental demonstrations of topologically protected one-way transports with pseudospin states in a phononic crystal beyond the graphene lattice with C 6v symmetry are still unexploited. Furthermore, the tunable topological states, in form of robust reconfigurable acoustic pathways, have been evaded in the topological phononic insulators. Here, we realize a topological phase transition in the double Dirac degenerate cone of rotatable triangular phononic crystals with C 3v symmetry, by introducing the zone folding mechanism. Along a topological domain wall between two portions of phononic crystals with distinct topological phases, we experimentally observe the quantum spin Hall (QSH) effect for xiabz2013@hnu.edu.cn (Baizhan Xia) djyu@hnu.edu.cn (Dejie Yu) liujian@hnu.edu.cn (Jian Liu)
This paper presents fatigue property of CFRP-strengthened cracked steel plate. Firstly, the finite element model of CFRP-strengthened cracked steel plate is established by using the cohesive zone model. With the finite element model, stress intensity factor of the crack-tipis calculated. Then, it gives the fatigue tests of cracked steel plate. According to the experimental data, the material constants C and n value sare obtained. The prediction fatigue life is calculated by the finite element model and Paris function and verified by the experimental data. The results show that the prediction fatigue life, calculated by the finite element model and the Paris formula, is consistent with the experimental fatigue life, which verifies the accuracy of our prediction model with finite element model and the Paris function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.