OBJECTIVE -Chromium picolinate (CrPic) supplementation has been suggested to improve glycemia, but there are conflicting reports on efficacy. We sought to determine the effect of CrPic on insulin sensitivity, glycemic control, and body composition in subjects with type 2 diabetes.RESEARCH DESIGN AND METHODS -Thirty-seven subjects with type 2 diabetes were evaluated. After baseline, subjects were placed on a sulfonylurea (glipizide gastrointestinal therapeutic system 5 mg/day) with placebo for 3 months. Subjects were then randomized in a double-blind fashion to receive either the sulfonylurea plus placebo (n ϭ 12) or the sulfonylurea plus 1,000 g Cr as CrPic (n ϭ 17) for 6 months. Body composition, insulin sensitivity, and glycemic control were determined at baseline, end of the 3-month single-blind placebo phase, and end of study.RESULTS -Subjects randomized to sulfonylurea/placebo, as opposed to those randomized to sulfonylurea/CrPic, had a significant increase in body weight (2.2 kg, P Ͻ 0.001 vs. 0.9 kg, P ϭ 0.11), percent body fat (1.17%, P Ͻ 0.001 vs. 0.12%, P ϭ 0.7), and total abdominal fat (32.5 cm 2 , P Ͻ 0.05 vs. 12.2 cm 2 , P Ͻ 0.10) from baseline. Subjects randomized to sulfonylurea/CrPic had significant improvements in insulin sensitivity corrected for fat-free mass (28.8, P Ͻ 0.05 vs. 15.9, P ϭ 0.4), GHb (Ϫ1.16%, P Ͻ 0.005 vs. Ϫ0.4%, P ϭ 0.3), and free fatty acids (Ϫ0.2 mmol/l, P Ͻ 0.001 vs. Ϫ0.12 mmol/l, P Ͻ 0.03) as opposed to sulfonylurea/placebo.CONCLUSIONS -This study demonstrates that CrPic supplementation in subjects with type 2 diabetes who are taking sulfonylurea agents significantly improves insulin sensitivity and glucose control. Further, CrPic supplementation significantly attenuated body weight gain and visceral fat accumulation compared with the placebo group. Diabetes Care 29:1826 -1832, 2006T he primary strategy to improve metabolic control in patients with type 2 diabetes consists of lifestyle modification combined with pharmacologic intervention (1). However, alternative strategies, e.g., nutritional supplementation with over-the-counter agents, are extensively practiced by a large number of patients and are frequently undertaken without first informing the medical provider. According to the Food and Drug Administration, there are more than 29,000 different nutritional supplements available to consumers, and Americans spend over 12 billion dollars per year on these supplements (2,3). Unfortunately, considerable controversy exists regarding use of dietary supplements in subjects with diabetes because efficacy data for many of the supplements consist of only uncontrolled studies and anecdotal reports. As such, there is a paucity of data in humans in regard to the effect of most commercially available supplements to improve metabolic abnormalities.One supplement that has attracted considerable clinical interest is chromium (4). However, routine use of chromium in subjects with diabetes is not currently recommended, and the most recent 2006 Clinical Practice Recommendations from the A...
Human studies suggest that chromium picolinate (CrPic) decreases insulin levels and improves glucose disposal in obese and type 2 diabetic populations. To evaluate whether CrPic may aid in treatment of the insulin resistance syndrome, we assessed its effects in JCR:LA-corpulent rats, a model of this syndrome. Male lean and obese hyperinsulinemic rats were randomly assigned to receive oral CrPic [80 microg/(kg. d); n = 5 or 6, respectively) in water or to control conditions (water, n = 5). After 3 mo, a 120-min intraperitoneal glucose tolerance test (IPGTT) and a 30-min insulin tolerance test were performed. Obese rats administered CrPic had significantly lower fasting insulin levels (1848 +/- 102 vs. 2688 +/- 234 pmol/L; P < 0.001; mean +/- SEM) and significantly improved glucose disappearance (P < 0.001) compared with obese controls. Glucose and insulin areas under the curve for IPGTT were significantly less for obese CrPic-treated rats than in obese controls (P < 0.001). Obese CrPic-treated rats had lower plasma total cholesterol (3.57 +/- 0.28 vs. 4.11 +/- 0.47 mmol/L, P < 0.05) and higher HDL cholesterol levels (1.92 +/- 0.09 vs. 1.37 +/- 0.36 mmol/L, P < 0.01) than obese controls. CrPic did not alter plasma glucose or cholesterol levels in lean rats. Total skeletal muscle glucose transporter (Glut)-4 did not differ among groups; however, CrPic significantly enhanced membrane-associated Glut-4 in obese rats after insulin stimulation. Thus, CrPic supplementation enhances insulin sensitivity and glucose disappearance, and improves lipids in male obese hyperinsulinemic JCR:LA-corpulent rats.
Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.
OBJECTIVE-Human adenovirus type 36 (Ad-36) increases adiposity but improves insulin sensitivity in experimentally infected animals. We determined the ability of Ad-36 to increase glucose uptake by human primary skeletal muscle (HSKM) cells. RESEARCH DESIGN AND METHODS-The effect of Ad-36 on glucose uptake and cell signaling was determined in HSKM cells obtained from type 2 diabetic and healthy lean subjects. Ad-2, another human adenovirus, was used as a negative control. Gene expression and proteins of GLUT1 and GLUT4 were measured by real-time PCR and Western blotting. Role of insulin and Ras signaling pathways was determined in Ad-36 -infected HSKM cells. RESULTS-Ad-36and Ad-2 infections were confirmed by the presence of respective viral mRNA and protein expressions. In a dose-dependent manner, Ad-36 significantly increased glucose uptake in diabetic and nondiabetic HSKM cells. Ad-36 increased gene expression and protein abundance of GLUT1 and GLUT4, GLUT4 translocation to plasma membrane, and phosphatidylinositol 3-kinase (PI 3-kinase) activity in an insulin-independent manner. In fact, Ad-36 decreased insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and IRS-1-and IRS-2-associated PI 3-kinase activities. On the other hand, Ad-36 increased Ras gene expression and protein abundance, and Ras siRNA abrogated Ad-36 -induced PI 3-kinase activation, GLUT4 protein abundance, and glucose uptake. These effects were not observed with Ad-2 infection.CONCLUSIONS-Ad-36 infection increases glucose uptake in HSKM cells via Ras-activated PI 3-kinase pathway in an insulinindependent manner. These findings may provide impetus to exploit the role of Ad-36 proteins as novel therapeutic targets for improving glucose handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.