Correspondence to: hjgao@iphy.ac.cn, sxdu@iphy.ac.cn †These authors contributed equally to this work.The construction of atomically-precise carbon nanostructures holds promise for developing novel materials for scientific study and nanotechnology applications. Here we show that graphene origami is an efficient way to convert graphene into atomically-precise, complex, and novel nanostructures. By scanning-tunneling-microscope manipulation at low temperature, we repeatedly fold and unfold graphene nanoislands (GNIs) along arbitrarily chosen direction. A bilayer graphene stack featuring a tunable twist angle and a tubular edge connection between the layers are formed. Folding single-crystal GNIs creates tubular edges with specified chirality and onedimensional electronic features similar to those of carbon nanotubes, while folding bicrystal GNIs creates well-defined intramolecular junctions. Both origami structural models and electronic band structures were computed to complement analysis of the
Materials possessing structural phase transformations exhibit a rich set of physical and chemical properties that can be used for a variety of applications. In 2D materials, structural transformations have so far been induced by strain, lasers, electron injection, electron/ion beams, thermal loss of stoichiometry, and chemical treatments or by a combination of such approaches and annealing. However, stoichiometry‐preserving, purely thermal, reversible phase transitions, which are fundamental in physics and can be easily induced, have not been observed. Here, the fabrication of monolayer Cu2Se, a new 2D material is reported, demonstrating the existence of a purely thermal structural phase transition. Scanning tunneling microscopy, scanning transmission electron microscopy, and density functional theory (DFT) identify two structural phases at 78 and 300 K. DFT calculations trace the phase‐transition mechanism via the existence/absence of imaginary (unstable) phonon modes at low and high temperatures. In situ, variable‐temperature low‐energy electron diffraction patterns demonstrate that the phase transition occurs across the whole sample at ≈147 K. Angle‐resolved photoemission spectra and DFT calculations show that a degeneracy at the Γ point of the energy bands of the high‐temperature phase is lifted in the low‐temperature phase. This work opens up possibilities for studying such phase transitions in 2D materials.
Abstract. β-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP) targets a number of substrates essential for specific aspects of tumorigenesis. In addition, β-TrCP regulates various important signaling pathways. As β-TrCP is involved in regulating the ubiquitination and degradation of multiple oncogenes and tumor suppressors, the function of β-TrCP varies between cancer types. At present, the association between β-TrCP expression and clinicopathological factors in glioma is unknown. Therefore, the current study used western blotting and immunohistochemistry to investigate the expression of β-TrCP protein in glioma tissue specimens. It was identified that β-TrCP protein expression levels were significantly lower in glioma compared with non-tumorous human brain tissues. Furthermore, the higher the grade of glioma, the lower the level of β-TrCP expression. Kaplan-Meier analysis demonstrated that patients with low β-TrCP expression experienced significantly worse overall survival compared with patients with high β-TrCP expression. The results indicate that downregulation of β-TrCP may be associated with poor survival in patients with glioma. Together, the current data indicates that β-TrCP may be applied as a useful indicator of glioma prognosis and may serve as an anticancer therapeutic target for glioma, however further investigation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.