Background: Apoptosis of lung structural cells contributes to the process of lung damage and remodeling in chronic obstructive pulmonary disease (COPD). Our previous studies demonstrated that exogenous hydrogen sulfide (H2S) can reduce the lung tissue pathology score, anti-inflammation and anti-oxidation effects in COPD, but the effect of H2S in regulating cigarette smoke (CS) induced bronchial epithelial cell apoptosis and the underlying mechanisms are not clear.Objectives: To investigate the effect of H2S on CS induced endoplasmic reticulum stress (ERS) and bronchial epithelial cell apoptosis.Methods: Male Sprague–Dawley rats randomly divided into four groups for treatment: control, CS, NaHS + CS, and propargylglycine (PPG) + CS. The rats in the CS group were exposed to CS generated from 20 commercial unfiltered cigarettes for 4 h/day, 7 days/week for 4 months. Since the beginning of the third month, freshly prepared NaHS (14 μmol/kg) and PPG (37.5 mg/kg) were intraperitoneally administered 30 min before CS-exposure in the NaHS and PPG groups. 16HBE cells were pretreated with Taurine (10 mM), 5 mmol/L 4-phenylbutyric acid (4-PBA) or NaHS (100, 200, and 400 μM) for 30 min, and then cells were exposed to 40 μmol/L nicotine for 72 h. ERS markers (GRP94, GRP78) and ERS-mediated apoptosis markers 4-C/EBP homologous protein (CHOP), caspase-3 and caspase-12 were assessed in rat lung tissues and human bronchial epithelial cells. The apoptotic bronchial epithelial cells were detected by Hoechst staining in vitro and TUNEL staining in vivo.Results: In CS exposed rats, peritoneal injection of NaHS significantly inhibited CS induced overexpression ERS-mediated apoptosis markers and upregulation of apoptotic rate in rat lungs, and inhibiting the endogenous H2S production by peritoneal injection of PPG exacerbated these effects. In the nicotine-exposed bronchial epithelial cells, appropriate concentration of NaHS and ERS inhibitors taurine and 4-PBA inhibited nicotine-induced upregulation of apoptotic rate and overexpression of ERS-mediated apoptosis markers.Conclusion: H2S inhibited lung tissue damage by attenuating CS induced ERS in rat lung and exogenous H2S attenuated nicotine induced ERS-mediated apoptosis in bronchial epithelial cells.
Objective-Oxidative stress plays a critical role in the development of abdominal aortic aneurysm (AAA). Intermedin (IMD) is a regulator of oxidative stress. Here, we investigated whether IMD reduces AAA by inhibiting oxidative stress. Approach and Results-In angiotensin II-induced ApoE −/− mouse and CaCl 2 -induced C57BL/6J mouse model of AAA, IMD 1−53 significantly reduced the incidence of AAA and maximal aortic diameter. Ultrasonography, hematoxylin, and eosin staining and Verhoeff-van Gieson staining showed that IMD 1−53 significantly decreased the enlarged aortas and elastic lamina degradation induced by angiotensin II or CaCl 2 . Mechanistically, IMD 1−53 attenuated oxidative stress, inflammation, vascular smooth muscle cell apoptosis, and matrix metalloproteinase activation. IMD 1−53 inhibited the activation of redox-sensitive signaling pathways, decreased the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, and reduced the activity of nicotinamide adenine dinucleotide phosphate oxidase in AAA mice. Expression of Nox4 was upregulated in human AAA segments and in angiotensin II-treated mouse aortas and was markedly decreased by IMD 1−53 . In vitro, vascular smooth muscle cells with small-interfering RNA knockdown of IMD showed significantly increased angiotensin II-induced reactive oxygen species, and small-interfering RNA knockdown of Nox4 markedly inhibited the reactive oxygen species. IMD knockdown further increased the apoptosis of vascular smooth muscle cells and inflammation, which was reversed by Nox4 knockdown. Preincubation with IMD 17−47 and protein kinase A inhibitor H89 inhibited the effect of IMD 1-53 , reducing Nox4 protein levels. Conclusions-IMD
Schistosomiasis is a parasitic helminth disease that can cause severe inflammatory pathology, leading to organ damage, in humans. During a schistosomal infection, the eggs are trapped in the host liver, and products derived from eggs induce a polarized Th2 cell response, resulting in granuloma formation and eventually fibrosis. Previous studies indicated that the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in schistosomiasis-associated liver fibrosis and that taurine could ameliorate hepatic granulomas and fibrosis caused by Schistosoma japonicum infection. Nevertheless, the precise role and molecular mechanism of the NLRP3 inflammasome and the protective effects of taurine in S. japonicum infection have not been extensively studied. In this study, we investigated the role of the NLRP3 inflammasome and the hepatoprotective mechanism of taurine in schistosoma-induced liver injury in mice. NLRP3 deficiency ameliorated S. japonicum-infection-induced hepatosplenomegaly, liver dysfunction, and hepatic granulomas and fibrosis; it also reduced NLRP3-dependent liver pyroptosis. Furthermore, taurine suppressed hepatic thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in mice with S. japonicum infections, thereby inhibiting the activation of downstream inflammatory mediators such as interleukin-1β and subsequent pyroptosis. Our results suggest that the TXNIP/NLRP3 inflammasome pathway and mediating pyroptosis are involved in S. japonicum-induced liver injury and may be a potential therapeutic target for schistosomiasis treatment. In addition, taurine may be useful to alleviate or to prevent the occurrence of schistosomiasis-associated liver fibrosis.
Intermedin (IMD) or adrenomedullin 2 is a novel peptide related to the calcitonin gene-related peptide (CGRP) family. Via calcitonin receptor-like receptor/receptor activity modifying proteins, the common receptor complexes of CGRP, IMD exerts a wide range of biological effects, especially regulation of cardiovascular homeostasis. Proteolytic processing of a larger IMD precursor yields a series of biologically active C-terminal fragments, IMD1-53, IMD1-47 and IMD8-47. IMD and its receptors are present in the cardiovascular system, and IMD is present at low levels in plasma. In the cardiovascular system, IMD has multiple functions such as regulation of blood pressure and cardiac function, pro-angiogenesis, endothelial barrier function protection, anti-oxidative stress, and anti-endoplasmic reticulum stress. IMD participates widely in the pathogenesis of atherosclerosis, hypertension, pulmonary arterial hypertension and vascular calcification. It is a vascular regulatory factor of homeostasis and a vital endogenous protective factor against vascular diseases. intermedin, vessel, homeostasis, vascular diseases Citation:Ni XQ, Zhang JS, Tang CS, Qi YF. Intermedin/adrenomedullin2: an autocrine/paracrine factor in vascular homeostasis and disease. Sci China Life Sci, 2014, 57: 781 -789,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.