Great enthusiasm in single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) has been aroused by the discovery of M−N X as a promising ORR catalysis center. However, the performance of SACs lags far behind that of stateof-the-art Pt due to the unsatisfactory adsorption−desorption behaviors of the reported catalytic centers. To address this issue, rational manipulation of the active site configuration toward a well-managed energy level and geometric structure is urgently desired, yet still remains a challenge. Herein, we report a novel strategy to accomplish this task through the construction of an Fe−Co dual-atom centered site. A spontaneously absorbed electron-withdrawing OH ligand was proposed to act proactively as an energy level modifier to empower easy intermediate desorption, while the triangular Fe−Co−OH coordination facilitates O−O bond scission. Benefiting from these attributes, the as-constructed FeCoN 5 −OH site enables an ORR onset potential and half-wave potential of up to 1.02 and 0.86 V (vs RHE), respectively, with an intrinsic activity over 20 times higher than the single-atom FeN 4 site. Our finding not only opens up a novel strategy to tailor the electronic structure of an atomic site toward boosted activity but also provides new insights into the fundamental understanding of diatomic sites for ORR electrocatalysis.
Photocatalytic hydrogen evolution is a promising technique for the direct conversion of solar energy into chemical fuels. Colloidal quantum dots with tunable band gap and versatile surface properties remain among the most prominent targets in photocatalysis despite their frequent toxicity, which is detrimental for environmentally friendly technological implementations. In the present work, all-inorganic sulfide-capped InP and InP/ZnS quantum dots are introduced as competitive and far less toxic alternatives for photocatalytic hydrogen evolution in aqueous solution, reaching turnover numbers up to 128,000 based on quantum dots with a maximum internal quantum yield of 31%. In addition to the favorable band gap of InP quantum dots, in-depth studies show that the high efficiency also arises from successful ligand engineering with sulfide ions. Due to their small size and outstanding hole capture properties, sulfide ions effectively extract holes from quantum dots for exciton separation and decrease the physical and electrical barriers for charge transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.