Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes.
High-energy rechargeable Li metal batteries are hindered by dendrite growth due to the use of a liquid electrolyte. Solid polymer electrolytes, as promising candidates to solve the above issue, are expected to own high Li ion conductivity without sacrificing mechanical strength, which is still a big challenge to realize. In this study, a bifunctional solid polymer electrolyte exactly having these two merits is proposed with an interpenetrating network of poly(ether-acrylate) (ipn-PEA) and realized via photopolymerization of ion-conductive poly(ethylene oxide) and branched acrylate. The ipn-PEA electrolyte with facile processing capability integrates high mechanical strength (ca. 12 GPa) with high room-temperature ionic conductance (0.22 mS cm), and significantly promotes uniform Li plating/stripping. Li metal full cells assembled with ipn-PEA electrolyte and cathodes within 4.5 V vs Li/Li operate effectively at a rate of 5 C and cycle stably at a rate of 1 C at room temperature. Because of its fabrication simplicity and compelling characteristics, the bifunctional ipn-PEA electrolyte reshapes the feasibility of room-temperature solid-state Li metal batteries.
In recent years, lithium batteries using conventional organic liquid electrolytes have been found to possess a series of safety concerns. Because of this, solid polymer electrolytes, benefiting from shape versatility, flexibility, low-weight and low processing costs, are being investigated as promising candidates to replace currently available organic liquid electrolytes in lithium batteries. However, the inferior ion diffusion and poor mechanical performance of these promising solid polymer electrolytes remain a challenge. To resolve these challenges and improve overall comprehensive performance, polymers are being coordinated with other components, including liquid electrolytes, polymers and inorganic fillers, to form polymer-based composite electrolytes. In this review, recent advancements in polymer-based composite electrolytes including polymer/ liquid hybrid electrolytes, polymer/polymer coordinating electrolytes and polymer/inorganic composite electrolytes are reviewed; exploring the benefits, synergistic mechanisms, design methods, and developments and outlooks for each individual composite strategy. This review will also provide discussions aimed toward presenting perspectives for the strategic design of polymer-based composite electrolytes as well as building a foundation for the future research and development of high-performance solid polymer electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.