The excited state of terpyridine derivatives of phenylene-vinylene fragments chelating Zn(II) show a strong solvatochromism (up to 56 nm) upon preferential solvation by polar solvents of an intraligand charge transfer state.
The photophysical behavior of a series of mono- and trimetallic Ru(II) and mixed Ru(II)/Fe(II) bis-terpyridyl complexes was examined. The complexes have bridging terpyridyl ligands linked by phenylene-vinylene substituents on the terpyridyl. For the complexes bridged by a single phenylene-vinylene, the lowest-energy excited state is metal-to-ligand charge transfer (MLCT), and excited-state decay is on the 1-10 ns time scale. The complexes with two phenylene-vinylene groups have thermally equilibrated excited states that are localized on the phenylene-vinylene bridge and have much longer lifetimes (>200 ns). Remarkably, the trimetallic complex having an Fe(II) terpyridyl center also has a long-lived excited state, despite the fact that low-energy iron-localized excited states exist on the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.