Overexpression of the tumor necrosis factor receptor-associated factor 4 (TRAF4) has been detected in many cancer types and is considered to foster tumor progression. However, the role of TRAF4 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that TRAF4 was highly expressed in HCC cell lines and HCC tissues compared with normal liver cell lines and adjacent noncancerous tissues. TRAF4 overexpression in HCC tissues was correlated with tumor quantity and vascular invasion. In vitro studies showed that TRAF4 was associated with HCC cell migration and invasion. An in vivo study verified that TRAF4 overexpression facilitated metastasis in nude mice. In addition, overexpressed TRAF4 promoted the phosphorylation of Akt and induced Slug overexpression, leading to downregulated E-cadherin and upregulated vimentin, while silencing TRAF4 moderated the phosphorylation of Akt and repressed the expression of Slug, which resulted in upregulated E-cadherin and downregulated vimentin. These effects were inversed after pretreatment of the PI3K/Akt inhibitor LY294002 or overexpression of constitutively active Akt1. Our study demonstrated that TRAF4 was involved in promoting HCC cell migration and invasion. The process was induced by the EMT through activation of the PI3K/Akt signaling pathway.
Overexpression of the tumor necrosis factor receptor-associated factor 4 (TRAF4) has been detected in many cancer types and is considered to foster tumor progression. However, the role of TRAF4 in hepatocellular carcinoma (HCC) remains elusive. In this study, we found that TRAF4 was
highly expressed in HCC cell lines and HCC tissues compared with normal liver cell lines and adjacent noncancerous tissues. TRAF4 overexpression in HCC tissues was correlated with tumor quantity and vascular invasion. In vitro studies showed that TRAF4 was associated with HCC cell migration
and invasion. An in vivo study verified that TRAF4 overexpression facilitated metastasis in nude mice. In addition, overexpressed TRAF4 promoted the phosphorylation of Akt and induced Slug overexpression, leading to downregulated E-cadherin and upregulated vimentin, while silencing TRAF4 moderated
the phosphorylation of Akt and repressed the expression of Slug, which resulted in upregulated E-cadherin and downregulated vimentin. These effects were inversed after pretreatment of the PI3K/Akt inhibitor LY294002 or overexpression of constitutively active Akt1. Our study demonstrated that
TRAF4 was involved in promoting HCC cell migration and invasion. The process was induced by the EMT through activation of the PI3K/Akt signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.