Cysteine protease cathepsins have traditionally been considered as lysosome-restricted proteases that mediate proteolysis of unwanted proteins. However, studies from the past decade demonstrate that these proteases are localized not only in acidic compartments (endosomes and lysosomes), where they participate in intracellular protein degradation, but also in the extracellular milieu, plasma membrane, cytosol, nucleus, and nuclear membrane, where they mediate extracellular matrix protein degradation, cell signalling, and protein processing and trafficking through the plasma and nuclear membranes and between intracellular organelles. Studies in experimental disease models and on cathepsin-selective inhibitors, as well as plasma and tissue biomarker data from animal models and humans, have verified the participation of cysteinyl cathepsins in the pathogenesis of many cardiovascular diseases, including atherosclerosis, myocardial infarction, cardiac hypertrophy, cardiomyopathy, abdominal aortic aneurysms, and hypertension. Clinical trials of cathepsin inhibitors in chronic inflammatory diseases suggest the utility of these inhibitors for the treatment of cardiovascular diseases and associated complications. Moreover, development of cell transfer technologies that enable ex vivo cell treatment with cathepsin inhibitors might limit the unwanted systemic effects of cathepsin inhibition and provide new avenues for targeting cysteinyl cathepsins. In this Review, we summarize the available evidence implicating cysteinyl cathepsins in the pathogenesis of cardiovascular diseases, discuss their potential as biomarkers of disease progression, and explore the potential of cathepsin inhibitors for the treatment of cardiovascular diseases.
Objective: By binding to its high-affinity receptor FcεR1, IgE activates mast cells, macrophages, and other inflammatory and vascular cells. Recent studies support an essential role of IgE in cardiometabolic diseases. Plasma IgE level is an independent predictor of human coronary heart disease. Yet, a direct role of IgE and its mechanisms in cardiometabolic diseases remain incompletely understood. Approach and Results: Using atherosclerosis prone Apoe −/− mice and IgE-deficient Ige −/− mice, we demonstrated that IgE deficiency reduced atherosclerosis lesion burden, lesion lipid deposition, smooth muscle cell and endothelial cell contents, chemokine MCP (monocyte chemoattractant protein)-1 expression and macrophage accumulation. IgE deficiency also reduced bodyweight gain and increased glucose and insulin sensitivities with significantly reduced plasma cholesterol, triglyceride, insulin, and inflammatory cytokines and chemokines, including IL (interleukin)-6, IFN (interferon)-γ, and MCP-1. From atherosclerotic lesions and peritoneal macrophages from Apoe −/− Ige −/− mice that consumed an atherogenic diet, we detected reduced expression of M1 macrophage markers (CD68, MCP-1, TNF [tumor necrosis factor]-α, IL-6, and iNOS [inducible nitric oxide synthase]) but increased expression of M2 macrophage markers (Arg [arginase]-1 and IL-10) and macrophage-sterol-responsive-network molecules (complement C3, lipoprotein lipase, LDLR [low-density lipoprotein receptor]-related protein 1, and TFR [transferrin]) that suppress macrophage foam cell formation. These IgE activities can be reproduced in bone marrow-derived macrophages from wild-type mice, but muted in cells from FcεR1-deficient mice, or blocked by anti-IgE antibody or complement C3 deficiency. Conclusions: IgE deficiency protects mice from diet-induced atherosclerosis, obesity, glucose tolerance, and insulin resistance by regulating macrophage polarization, macrophage-sterol-responsive-network gene expression, and foam cell formation.
Summary Transforming growth factor beta (TGF-β) signaling contributes to tissue fibrosis. Here we demonstrate that TGF-β enhances CatS and CatK expression but reduces CatB and CatL expression in mouse kidney tubular epithelial cells (TECs). CatS- and CatK deficiency reduces TEC nuclear membrane importer importin-β expression, Smad-2/3 activation, and extracellular matrix (ECM) production. Yet CatB- and CatL-deficiency displays the opposite observations with reduced nuclear membrane exporter RanBP3 expression. CatS and CatK form immunocomplexes with the importin-β and RanBP3 more effectively than do CatB and CatL. On the plasma membrane, CatS and CatK preferentially form immunocomplexes with and activate TGF-β receptor-2, whereas CatB and CatL form immunocomplexes with and inactivate TGF-β receptor-1. Unilateral ureteral obstruction-induced renal injury tests differential cathepsin activities in TGF-β signaling and tissue fibrosis. CatB- or CatL-deficiency exacerbates fibrosis, whereas CatS- or CatK-deficiency protects kidneys from fibrosis. These cathepsins exert different effects in the TGF-β signaling cascade independent of their proteolytic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.